
Part 1 of 4: 
 

A New Monotonic, Clone-Independent, 
Reversal Symmetric, and Condorcet-Consistent 

Single-Winner Election Method 
 

(draft, 3 March 2017) 
 
Markus Schulze 
Markus.Schulze@Alumni.TU-Berlin.de 
 
Summary. In recent years, the Pirate Party of Sweden, the Wikimedia 
Foundation, the Debian project, the “Software in the Public Interest” project, 
the Gentoo project, and many other private organizations adopted a new 
single-winner election method for internal elections and referendums. In this 
paper, we will introduce this method, demonstrate that it satisfies e.g. 
resolvability, Condorcet, Schwartz, Smith-IIA, Pareto, reversal symmetry, 
monotonicity, prudence, and independence of clones and present an O(C^3) 
algorithm to calculate the winner, where C is the number of alternatives. 
 
Keywords and Phrases: Condorcet criterion, independence of clones, 
monotonicity, Pareto efficiency, reversal symmetry, single-winner election 
methods, prudent ranking rules 
 
JEL Classification Number: D71 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper is the first part of a series of papers that can be downloaded here: 
 

http://m-schulze.9mail.de/schulze1.pdf 
http://m-schulze.9mail.de/schulze2.pdf 
http://m-schulze.9mail.de/schulze3.zip 
http://m-schulze.9mail.de/schulze4.pdf 

  

mailto:Markus.Schulze@Alumni.TU-Berlin.de
http://m-schulze.9mail.de/schulze1.pdf
http://m-schulze.9mail.de/schulze2.pdf
http://m-schulze.9mail.de/schulze3.zip
http://m-schulze.9mail.de/schulze4.pdf


Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 2 

Contents 

Symbols ........................................................................................................... 3 
1. Introduction ................................................................................................. 3 
2. Definition of the Schulze Method ............................................................... 5 

2.1. Preliminaries .................................................................................. 5 
2.2. Basic Definitions.......................................................................... 10 
2.3. Implementation ............................................................................ 12 

3. Examples ................................................................................................... 15 
3.1. Example 1 .................................................................................... 15 
3.2. Example 2 .................................................................................... 20 
3.3. Example 3 .................................................................................... 23 
3.4. Example 4 .................................................................................... 26 
3.5. Example 5 .................................................................................... 29 

3.5.1. Situation #1 ..................................................................... 29 
3.5.2. Situation #2 ..................................................................... 35 

3.6. Example 6 .................................................................................... 41 
3.6.1. Situation #1 ..................................................................... 41 
3.6.2. Situation #2 ..................................................................... 44 

3.7. Example 7 .................................................................................... 48 
3.8. Example 8 .................................................................................... 57 
3.9. Example 9 .................................................................................... 61 
3.10. Example 10 ................................................................................ 65 

4. Analysis of the Schulze Method ............................................................... 69 
4.1. Transitivity ................................................................................... 69 
4.2. Resolvability ................................................................................ 72 

4.2.1. Formulation #1 ............................................................... 72 
4.2.2. Formulation #2 ............................................................... 74 

4.3. Pareto ........................................................................................... 77 
4.3.1. Formulation #1 ............................................................... 77 
4.3.2. Formulation #2 ............................................................... 78 

4.4. Reversal Symmetry ...................................................................... 80 
4.5. Monotonicity ................................................................................ 82 
4.6. Independence of Clones ............................................................... 85 
4.7. Smith ............................................................................................ 89 
4.8. MinMax Set ................................................................................. 92 
4.9. Prudence ...................................................................................... 95 
4.10. Schwartz .................................................................................... 97 
4.11. Weak Condorcet Winners and Weak Condorcet Losers ............ 98 
4.12. Sequential Independence ......................................................... 103 
4.13. k-Consistency ........................................................................... 105 

5. Tie-Breaking ........................................................................................... 118 
5.1. Calculating a Complete Ranking Using a TBRL ....................... 118 
5.2. Calculating a TBRC and a TBRL .............................................. 122 
5.3. Transitivity ................................................................................. 124 
5.4. Analysis ..................................................................................... 138 

6. Definition of the Strength of a Pairwise Link ......................................... 145 
7. Supermajority Requirements ................................................................... 148 
8. Electoral College ..................................................................................... 150 
9. Comparison with other Methods ............................................................. 152 
10. Discussion ............................................................................................. 154 
Acknowledgments ....................................................................................... 155 
References ................................................................................................... 155 

 



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 3 

Symbols 
 
∧   ... and ... 
∨   ... or ... 
∀  ... for all ... 
∃   ... there is at least one ... 
∈   ... element of ... 
∉ ... not element of ... 
   natural numbers without zero,  = {1, 2, 3, ...} 
0  natural numbers with zero, 0 = {0, 1, 2, 3, ...} 
   real numbers 

 
1. Introduction 

 
One important property of a good single-winner election method is that it 

minimizes the number of “overruled” voters (according to some heuristic). 
Because of this reason, the Simpson-Kramer method, that always chooses 
that alternative whose worst pairwise defeat is the weakest, was very popular 
over a long time. However, in recent years, the Simpson-Kramer method has 
been criticized by many social choice theorists. Smith (1973) criticizes that 
this method doesn’t choose from the top-set of alternatives. Tideman (1987) 
complains that this method is vulnerable to the strategic nomination of a 
large number of similar alternatives, so-called clones. And Saari (1994) 
rejects this method for violating reversal symmetry. A violation of reversal 
symmetry can lead to strange situations where still the same alternative is 
chosen when all ballots are reversed, meaning that the same alternative is 
identified as best one and simultaneously as worst one. 

 
In this paper, we will show that only a slight modification (section 4.8) of 

the Simpson-Kramer method is needed so that the resulting method satisfies 
the criteria proposed by Smith (section 4.7), Tideman (section 4.6), and Saari 
(section 4.4). The resulting method will be called Schulze method. Random 
simulations by Wright (2009) confirmed that, in almost 99% of all instances, 
the Schulze method conforms with the Simpson-Kramer method (table 9.1). 
In this paper, we will prove that, nevertheless, the Schulze method still 
satisfies all important criteria that are also satisfied by the Simpson-Kramer 
method, like resolvability (section 4.2), Pareto (section 4.3), monotonicity 
(section 4.5), and prudence (section 4.9). Because of these reasons, already 
several private organizations have adopted the Schulze method. 

 
1997 – 2006: In 1997, I proposed the Schulze method to a large number of 

people, who are interested in mathematical aspects of election 
methods. In January 2003, the “Software in the Public Interest” (SPI) 
project, a software developer organization with about 300 eligible 
members, adopted this method. In June 2003, the Debian project, a 
software developer organization with about 1,000 eligible members, 
adopted this method in a referendum with 144 against 16 votes; 
Debian GNU/Linux is the largest and most popular non-commercial 
Linux distribution. In May 2005, the Gentoo Foundation, a software 
developer organization with about 200 eligible members, adopted this 
method; Gentoo Linux is another wide-spread Linux distribution. 

 
2007 – 2011: In 2008, 2009, and 2011, the Wikimedia Foundation, a non-

profit charitable organization with about 43,000 eligible members    
(in 2011), used the proposed method for the election of its Board of 
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Trustees; the Wikimedia Foundation is the umbrella organization    
e.g. for Wikipedia, Wiktionary, Wikiquote, Wikidata, Wikibooks, 
Wikisource, Wikinews, Wikivoyage, Wikiversity, and Wikispecies;   
it is, therefore, the fifth most important Internet corporation (after 
Alphabet/Google/YouTube, Facebook/WhatsApp, Yahoo!, and 
Baidu). In June 2008, the “Free Software Foundation Europe” (FSFE), 
a software project with about 1,500 eligible members, adopted this 
method. In July 2008, Ubuntu, a software developer organization with 
about 700 eligible members, adopted this method. In October 2009, 
the “Pirate Party of Sweden” (about 4,000 eligible members) adopted 
this method. In May 2010, the “Pirate Party of Germany” (about 
12,000 eligible members) adopted this method. In November 2010, 
OpenStack, a software project with about 3,000 eligible members, 
adopted this method. Since February 2011, the “Pirate Party of 
Austria” (about 300 eligible members) uses this method. Since 
November 2011, the “Pirate Party of Australia” (about 1,300 eligible 
members) uses this method. 

 
2012 – 2017: Since January 2013, the “Pirate Party of Iceland” (about 4,000 

eligible members) uses this method. Since April 2013, the associated 
student government at Northwestern University (about 20,000 eligible 
members) uses this method. Since October 2013, the “German 
Association of Pediatricians” (“Berufsverband der Kinder- und 
Jugendärzte”; BVKJ; about 12,000 eligible members) uses this 
method. Since October 2013, the “Five Star Movement” (“Movimento 
5 Stelle”, M5S), a political party in Italy with about 140,000 eligible 
members, uses this method. Since May 2014, the associated student 
government at Albert Ludwig University of Freiburg (about 25,000 
eligible members) uses this method. In February 2016, the city of Silla 
(about 19,000 inhabitants) in Spain adopted the Schulze method for 
referendums (www01 – www05). In July 2016, the “European 
Students’ Forum” (“Association des états généraux des étudiants de 
l’Europe”, AEGEE), a student organization with about 13,000 eligible 
members, adopted this method. Since January 2017, Podemos, a 
political party in Spain with about 460,000 eligible members, uses this 
method. 

 
Today (March 2017), the proposed method is used by more than 60 

organizations with more than 700,000 eligible members in total. Therefore, 
the proposed method is more wide-spread than all other Condorcet-
consistent single-winner election methods combined. 

 
Furthermore, the proposed method is used by many Internet decision 

support systems, like the “Condorcet Internet Voting Service” (CIVS), 
GoogleVotes (Hardt and Lopes, 2015), LiquidFeedback (Behrens, 2014), 
Selectricity (Hill, 2008), Airesis, preftools, OpenAgora, and OpenSTV. 

 
There has been some debate about an appropriate name for this method. 

Some people suggested names like “beatpath”, “beatpath method”, “beatpath 
winner”, “beatpath power ranking” (BeatPower), “path method”, “path 
voting”, “path winner”, “Schwartz sequential dropping” (SSD), and 
“cloneproof Schwartz sequential dropping” (CSSD). Brearley (1999) 
suggested names like “descending minimum gross score” (DminGS), 
“descending minimum augmented gross score” (DminAGS), and 
“descending minimum doubly augmented gross score” (DminDAGS), 
depending on how the strength of a pairwise link is measured. Heitzig (2001) 
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suggested names like “strong immunity from binary arguments” (SImA) and 
“sequential dropping towards a spanning tree” (SDST). However, I prefer 
the name “Schulze method”, not because of academic arrogance, but because 
the other names do not refer to the method itself but to specific heuristics for 
implementing it, and so may mislead readers into believing that no other 
method for implementing it is possible. 

 
In section 2 of this paper, the Schulze method is defined. In section 3,  this 

method is applied to concrete examples. In section 4, this method is analyzed. 
Detailed descriptions of this method can also be found in publications by 
Schulze (2003, 2011), Tideman (2006, pages 228–232), Stahl and Johnson 
(2006, pages 119–130), McCaffrey (2008a, 2008b), Börgers (2009, pages  
37–42), Camps (2012a, 2012b, 2013, 2014a, 2014b, 2014c), Behrens (2014), 
and D. Müller (2014, 2015). This method is also described and discussed in 
papers by Meskanen and Nurmi (2006a, 2006b, 2008), Yue (2007), Nebel 
(2009), Wright (2009), Rivest and Shen (2010), Gaspers (2012), Grünheid 
(2012, 2015), Negriu (2012), Parkes and Xia (2012), Happes (2013), Menton 
(2013a, 2013b), J. Müller (2013), Felsenthal and Tideman (2014), Li (2014), 
Mattei (2014), Reisch (2014), Schend (2015), Baumeister and Rothe (2016), 
Bubboloni and Gori (2016), Caragiannis (2016), Diethelm (2016), Fischer 
(2016), Hemaspaandra (2016), Parkes and Seuken (2016), and Ruiz-Padillo 
(2016). Applications of the Schulze method are described in papers by 
Callison-Burch (2009), Arguello (2011a, 2011b), Audhkhasi (2011), Gelder 
(2011), Maheswari (2012), Muldoon (2012), Oryńczak (2012), Prati (2012), 
Bohne (2013, 2015), Zhou (2013, 2014), Akbib (2014), Garg (2014), 
Lawonn (2014), Pallett (2014), Wang (2014), Baer (2015), Bountris (2015), 
Degeest (2015), Evita (2015), Nguyen (2015), Plösch (2015), Aswatha 
(2016), Cai (2016), Chen (2016), Mangeli (2016), Rijnsburger (2016), 
Verdiesen (2016), Xexéo (2016), and Moal (2017). 

 
2. Definition of the Schulze Method 
 
2.1. Preliminaries 
 

We presume that A is a finite and non-empty set of alternatives. C ∈  
with 1 < C < ∞ is the number of alternatives in A. 

 
A binary relation  on A is asymmetric if it has the following property: 
 

∀ a,b ∈ A, exactly one of the following three statements is valid: 
 

1. a  b. 
2. b  a. 
3. a ≈ b (where “a ≈ b” means “neither a  b nor b  a”). 

 
A binary relation  on A is irreflexive if it has the following property: 
 

∀ a ∈ A: a ≈ a. 
 
A binary relation  on A is transitive if it has the following property: 
 

∀ a,b,c ∈ A: ( ( a  b and b  c ) ⇒ a  c ). 
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A binary relation  on A is negatively transitive if it has the following 
property (where “a  b” means “not b  a”): 

 
∀ a,b,c ∈ A: ( ( a  b and b  c ) ⇒ a  c ). 

 
A binary relation  on A is linear (or total or complete) if it has the 

following property: 
 

∀ a,b ∈ A: ( b ∈ A \ {a} ⇒ ( a  b or b  a ) ). 
 
A strict partial order is an asymmetric, irreflexive, and transitive 

relation. A strict weak order is a strict partial order that is also negatively 
transitive. A linear order (or total order or complete order) is a strict weak 
order that is also linear. A profile is a finite and non-empty list of strict weak 
orders each on A. 

 
Input of the proposed method is a profile V. N ∈  with 0 < N < ∞ is the 

number of strict weak orders in V : = { 1, ..., N }. These strict weak orders 
will sometimes be called “voters” or “ballots”. 

 
Suppose V1 : = { 1, ..., N1 } and V2 : = { 1’, ..., N2’ } are two profiles 

each on the same set of alternatives A. Then the concatenation of these two 
profiles will be denoted V1 + V2 : = { 1, ..., N1 , 1’, ..., N2’ }. 

 
“a v b” means “voter v ∈ V strictly prefers alternative a ∈ A to 

alternative b”. “a ≈v b” means “voter v ∈ V is indifferent between alternative 
a and alternative b”. “a v b” means “a v b or a ≈v b”. 

 
Output of the proposed method is (1) a strict partial order  on A and    

(2) a set ∅ ≠  ⊆ A of potential winners. 
 

A possible implementation of the Schulze method looks as follows: 
 

Each voter gets a complete list of all alternatives and ranks these 
alternatives in order of preference. The individual voter may give    
the same preference to more than one alternative and he may keep 
alternatives unranked. When a given voter does not rank all 
alternatives, then this means (1) that this voter strictly prefers all 
ranked alternatives to all not ranked alternatives and (2) that this voter 
is indifferent between all not ranked alternatives. The individual voter 
may also skip preferences; however, skipping preferences has no 
impact on the result of the elections since only the cast order of the 
preferences matters, not the absolute numbers. 

 
Suppose N[e,f] : = ║{ v ∈ V | e v f }║ is the number of voters who 

strictly prefer alternative e to alternative f. We presume that the strength of 
the link ef depends only on N[e,f] and N[f,e]. Therefore, the strength of the 
link ef can be denoted (N[e,f],N[f,e]). We presume that a binary relation D 
on 0 × 0 is defined such that the link ef is stronger than the link gh if and 
only if (N[e,f],N[f,e]) D (N[g,h],N[h,g]). N[e,f] is the support for the link ef; 
N[f,e] is its opposition. 
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Example 1 (margin): 
 

When the strength of the link ef is measured by margin, then its 
strength is the difference N[e,f] – N[f,e] between its support N[e,f] and 
its opposition N[f,e]. 

 
(N[e,f],N[f,e]) margin (N[g,h],N[h,g]) if and 
only if N[e,f] – N[f,e] > N[g,h] – N[h,g]. 
 

Example 2 (ratio): 
 

When the strength of the link ef is measured by ratio, then its strength is 
the ratio N[e,f] / N[f,e] between its support N[e,f] and its opposition N[f,e]. 

 
(N[e,f],N[f,e]) ratio (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] ∙ N[h,g] > N[f,e] ∙ N[g,h]. 
4. N[e,f] > N[g,h] and N[f,e] ≤ N[h,g]. 
5. N[e,f] ≥ N[g,h] and N[f,e] < N[h,g]. 

 
Example 3 (winning votes): 
 

When the strength of the link ef is measured by winning votes, then its 
strength is measured primarily by its support N[e,f]. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] < N[h,g]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
 

Example 4 (losing votes): 
 

When the strength of the link ef is measured by losing votes, then its 
strength is measured primarily by its opposition N[f,e]. 

 
(N[e,f],N[f,e]) los (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] < N[h,g]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] > N[g,h]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
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The most intuitive definitions for the strength of a link are its margin and 
its ratio. However, we only presume that D is a strict weak order on 0 × 0. 

 
For some proofs, we have to make additional presumptions for D. We 

will state explicitly when and where we take use of additional presumptions. 
Typical additional presumptions for D are: 

 
 

(2.1.1) (positive responsiveness) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
( ( x1 > y1 ∧ x2 ≤ y2 ) ∨ ( x1 ≥ y1 ∧ x2 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 

 
 

(2.1.2) (reversal symmetry) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
(x1,x2) D (y1,y2) ⇒ (y2,y1) D (x2,x1). 
 
 

(2.1.3) (homogeneity) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0 ∀ c1,c2 ∈ : 
(c1·x1,c1·x2) D (c1·y1,c1·y2) ⇒ (c2·x1,c2·x2) D (c2·y1,c2·y2). 

 
 
The presumption, that the strength of the link ef depends only on N[e,f] 

and N[f,e], guarantees (1) that the proposed method satisfies anonymity and 
neutrality, (2) that adding a ballot, on which all alternatives are ranked 
equally, cannot change the result of the elections, and (3) that the proposed 
method is a C2 Condorcet social choice function (CSCF) according to 
Fishburn’s (1977) terminology. 

 
Presumption (2.1.1) says that, when the support of a link increases and its 

opposition doesn’t increase or when its opposition decreases and its support 
doesn’t decrease, then the strength of this link increases. So presumption 
(2.1.1) says that the strength of a link responses to a change of its support or 
its opposition in the correct manner. Presumption (2.1.1) guarantees that the 
proposed method satisfies resolvability (section 4.2), Pareto (section 4.3), and 
monotonicity (section 4.5). When each voter v ∈ V casts a linear order v on 
A, then all definitions for D, that satisfy presumption (2.1.1), are identical. 

 
Presumption (2.1.2) says that, the stronger the link (x1,x2) gets, the weaker 

the opposite link (x2,x1) gets. Presumption (2.1.2) basically says that, when 
the individual ballots v are reversed for all voters v ∈ V, then also the order 
of the links (x1,x2) D (y1,y2) is reversed. 

 
Homogeneity means that the result depends only on the proportion of 

ballots of each type, not on their absolute numbers. Presumption (2.1.3) 
guarantees that the proposed method satisfies homogeneity. 

 
margin, ratio, win, and los each satisfy (2.1.1) – (2.1.3). 
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Corollary (2.1.4): 

If D satisfies presumption (2.1.2), then all ties have equivalent strengths. 
In short: 

(2.1.4) ∀ x,y ∈ 0: (x,x) ≈D (y,y). 

Proof of corollary (2.1.4): 

Suppose (x,x) D (y,y) for some x,y ∈ 0. Then with (2.1.2), we get     
(y,y) D (x,x). But this is a contradiction to the presumption (x,x) D (y,y) and 
to the presumption that D is a strict weak order.       □ 

Corollary (2.1.5): 

If D satisfies presumptions (2.1.1) and (2.1.2), then (i) every pairwise 
victory is stronger than every pairwise tie and (ii) every pairwise tie is 
stronger than every pairwise defeat. In short: 

(2.1.5) (majority) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
( ( x1 > x2 ∧ y1 ≤ y2 ) ∨ ( x1 ≥ x2 ∧ y1 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 

Proof of corollary (2.1.5): 

Suppose (x1,x2) ∈ 0 × 0 with x1 > x2 is a victory. 

Suppose (y1,y2) ∈ 0 × 0 with y1 = y2 is a tie. 

Suppose (z1,z2) ∈ 0 × 0 with z1 < z2 is a defeat. 

With (2.1.1), we get: (x1,x2) D (x2,x2). 

With (2.1.4), we get: (x2,x2) ≈D (y1,y2). 

With (2.1.4), we get: (y1,y2) ≈D (z1,z1). 

With (2.1.1), we get: (z1,z1) D (z1,z2). 

Therefore, we get: (x1,x2) D (x2,x2) ≈D (y1,y2) ≈D (z1,z1) D (z1,z2). 

Thus, we get (2.1.5).          □ 

 
Suppose ∅ ≠  ⊂ 0 × 0 is finite and non-empty. Then “maxD”, the 

set of maximum elements of , and “minD”, the set of minimum elements 
of , are defined as follows: (β1,β2) ∈ maxD if and only if (1) (β1,β2) ∈  
and (2) (β1,β2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . (γ1,γ2) ∈ minD if and only if      
(1) (γ1,γ2) ∈  and (2) (γ1,γ2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . 

 
We write “(β1,β2) : = maxD” and “(γ1,γ2) : = minD” for “(β1,β2) is an 

arbitrarily chosen element of maxD” and “(γ1,γ2) is an arbitrarily chosen 
element of minD”. 
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2.2. Basic Definitions 
 
In this section, the Schulze method is defined. Concrete examples can be 

found in section 3. 
 
Basic idea of the Schulze method is that the strength of the indirect 

comparison “alternative a vs. alternative b” is the strength of the strongest 
path a ≡ c(1),...,c(n) ≡ b from alternative a ∈ A to alternative b ∈ A \ {a} and 
that the strength of a path is the strength (N[c(i),c(i+1)],N[c(i+1),c(i)]) of its 
weakest link c(i),c(i+1). 

 
The Schulze method is defined as follows: 

 
A path from alternative x ∈ A to alternative y ∈ A \ {x} is a sequence of 
alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. n ∈  with 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 

 
The strength of the path c(1),...,c(n) is 

minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
In other words: The strength of a path is the strength of its weakest link. 
 
When a path c(1),...,c(n) has the strength (z1,z2) ∈ 0 × 0, then the 
critical links of this path are the links with (N[c(i),c(i+1)],N[c(i+1),c(i)]) 
≈D (z1,z2). 
 
PD[a,b] : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a path from alternative a to alternative b }. 
 
In other words: PD[a,b] ∈ 0 × 0 is the strength of the strongest path 
from alternative a ∈ A to alternative b ∈ A \ {a}. 
 
(2.2.1) The binary relation  on A is defined as follows: 

ab ∈  : ⇔ PD[a,b] D PD[b,a]. 
 

(2.2.2)  : = { a ∈ A | ∀ b ∈ A \ {a}: ba ∉  } is the set of 
potential winners. 

 
When there is only one potential winner  = {a}, then this alternative is a 

unique winner. 
 
When PD[a,b] D PD[b,a], then we say “alternative a disqualifies 

alternative b” or “alternative a dominates alternative b”. 
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As the link ab is already a path from alternative a to alternative b of 
strength (N[a,b],N[b,a]), we get 

 
(2.2.3) ∀ a,b ∈ A: PD[a,b] D (N[a,b],N[b,a]). 
 
With (2.2.1) and (2.2.3), we get 
 
(2.2.4) (N[a,b],N[b,a]) D PD[b,a] ⇒ ab ∈ . 
 
Furthermore, we get 

 
(2.2.5) ∀ a,b,c ∈ A: minD { PD[a,b], PD[b,c] } D PD[a,c]. 
 
Otherwise, if minD { PD[a,b], PD[b,c] } was strictly larger than PD[a,c], 

then this would be a contradiction to the definition of PD[a,c] since there 
would be a path from alternative a to alternative c via alternative b with a 
strength of more than PD[a,c]. 

 
Furthermore, we get 

 
(2.2.6) ∀ a,b ∈ A: PD[a,b] D maxD { (N[a,c],N[c,a]) | c ∈ A \ {a} }. 
 
(2.2.7) ∀ a,b ∈ A: PD[a,b] D maxD { (N[c,b],N[b,c]) | c ∈ A \ {b} }. 
 
The asymmetry of  follows directly from the asymmetry of D. The 

irreflexivity of  follows directly from the irreflexivity of D. Furthermore, 
in section 4.1, we will see that the binary relation  is transitive. This 
guarantees that there is always at least one potential winner. 

 
Suppose ∅ ≠ B ⊊ A. Then we get 
 
(2.2.8) ∀ a ∈ B ∀ b ∉ B: PD[a,b] D maxD { (N[c,d],N[d,c]) | c ∈ B and d ∉ B }. 
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2.3. Implementation 
 
The strength PD[i,j] of the strongest path from alternative i ∈ A to 

alternative j ∈ A \ {i} can be calculated with the Floyd (1962) algorithm. The 
runtime to calculate the strengths of all strongest paths is O(C^3), where C is 
the number of alternatives in A. 
 
Input: N[i,j] ∈ 0 is the number of voters who strictly prefer alternative    

i ∈ A to alternative j ∈ A \ {i}. 
 
Output: PD[i,j] ∈ 0 × 0 is the strength of the strongest path from 

alternative i ∈ A to alternative j ∈ A \ {i}. 
 
pred[i,j] ∈ A \ {j} is the predecessor of alternative j in the strongest 
path from alternative i ∈ A to alternative j ∈ A \ {i}. 
 
 is the binary relation as defined in (2.2.1). 
 
“winner[i] = true” if and only if i ∈ . 

 
Stage 1 (initialization): 
 

1 for i : = 1 to C 
2 begin 
3 for j : = 1 to C 
4 begin 
5 if ( i ≠ j ) then 
6 begin 
7 PD[i,j] : = (N[i,j],N[j,i]) 
8 pred[i,j] : = i 
9 end 

10 end 
11 end 
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Stage 2 (calculation of the strengths of the strongest paths): 
 

12 for i : = 1 to C 
13 begin 
14 for j : = 1 to C 
15 begin 
16 if ( i ≠ j ) then 
17 begin 
18 for k : = 1 to C 
19 begin 
20 if ( i ≠ k ) then 
21 begin 
22 if ( j ≠ k ) then 
23 begin 
24 if ( PD[j,k] D minD { PD[j,i], PD[i,k] } ) then 
25 begin 
26 PD[j,k] : = minD { PD[j,i], PD[i,k] } 
27 if ( pred[j,k] ≠ pred[i,k] ) then 
28 begin 
29 pred[j,k] : = pred[i,k] 
30 end 
31 end 
32 end 
33 end 
34 end 
35 end 
36 end 
37 end 

 
Stage 3 (calculation of the binary relation  and the set of potential winners): 
 

38 for i : = 1 to C 
39 begin 
40 winner[i] : = true 
41 for j : = 1 to C 
42 begin 
43 if ( i ≠ j ) then 
44 begin 
45 if ( PD[j,i] D PD[i,j] ) then 
46 begin 
47 ji ∈  
48 winner[i] : = false 
49 end 
50 else 
51 begin 
52 ji ∉  
53 end 
54 end 
55 end 
56 end 
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(α) It cannot be stressed frequently enough that the order of the indices in 
the triple-loop of the Floyd algorithm is not irrelevant. When i is the index of 
the outer loop of the triple-loop of the Floyd algorithm, then the clause (line 
24) must be “ if ( PD[j,k] D minD { PD[j,i], PD[i,k] } ) ”. Otherwise, it is not 
guaranteed that a single pass through the triple-loop of the Floyd algorithm 
is sufficient to find the strongest paths. 

 
(β) With the predecessor matrix pred[i,j], we can recursively determine 

the strongest paths. Suppose we want to determine the strongest path 
c(1),...,c(n) from alternative a ∈ A to alternative b ∈ A \ {a}. Then we start 
with 

 
  n : = 1 
 
  d(1) : = b 
 
We repeat 
 
  n : = n + 1 
 
  d(n) : = pred[a,d(n–1)] 
 
until we get d(n) = a for some n ∈ . The strongest path c(1),...,c(n) from 

alternative a to alternative b is then given by d(n),...,d(1). 
 
(γ) The runtime to calculate the pairwise matrix is O(N∙(C^2)). The 

runtime of the Floyd algorithm, as defined in this section, is O(C^3). 
Therefore, the total runtime to calculate the binary relation , as defined in 
(2.2.1), and the set , as defined in (2.2.2), is O(N∙(C^2) + C^3). 
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3. Examples 
 

3.1. Example 1 
 

Example 1: 
 
8 voters a v c v d v b 
2 voters b v a v d v c 
4 voters c v d v b v a 
4 voters d v b v a v c 
3 voters d v c v b v a 
 
N[i,j] ∈ 0 is the number of voters who strictly prefer alternative i ∈ A to 

alternative j ∈ A \ {i}. In example 1, the pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 8 14 10 

N[b,*] 13 --- 6 2 

N[c,*] 7 15 --- 12 

N[d,*] 11 19 9 --- 

 
The following digraph illustrates the graph theoretic interpretation of 

pairwise elections. If N[i,j] > N[j,i], then there is a link from vertex i to 
vertex j of strength (N[i,j],N[j,i]): 

 
 
 

 
  

a b 

c d  

(13,8) 

(14,7) 

(15,6) 

(12,9) 

(11,10) 

(19,2) 
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The above digraph can be used to determine the strengths of the strongest 
paths. In the following, “x, (Z1,Z2), y” means “(N[x,y],N[y,x]) = (Z1,Z2)”. 

 
a → b: There are 2 paths from alternative a to alternative b. 
 

Path 1: a, (14,7), c, (15,6), b 
with a strength of minD { (14,7), (15,6) } ≈D (14,7). 

 
Path 2: a, (14,7), c, (12,9), d, (19,2), b 

  with a strength of minD { (14,7), (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative a to alternative b 
is maxD { (14,7), (12,9) } ≈D (14,7). 
 

a → c: There is only one path from alternative a to alternative c. 
 

Path 1: a, (14,7), c with a strength of (14,7). 
 
a → d: There is only one path from alternative a to alternative d. 
 

Path 1: a, (14,7), c, (12,9), d 
  with a strength of minD { (14,7), (12,9) } ≈D (12,9). 
 
b → a: There is only one path from alternative b to alternative a. 
 

Path 1: b, (13,8), a with a strength of (13,8). 
 
b → c: There is only one path from alternative b to alternative c. 
 

Path 1: b, (13,8), a, (14,7), c 
with a strength of minD { (13,8), (14,7) } ≈D (13,8). 

 
b → d: There is only one path from alternative b to alternative d. 
 

Path 1: b, (13,8), a, (14,7), c, (12,9), d 
with a strength of minD { (13,8), (14,7), (12,9) } ≈D (12,9). 

 
c → a: There are 3 paths from alternative c to alternative a. 
 

Path 1: c, (15,6), b, (13,8), a 
with a strength of minD { (15,6), (13,8) } ≈D (13,8). 

 
Path 2: c, (12,9), d, (11,10), a 

  with a strength of minD { (12,9), (11,10) } ≈D (11,10). 
 

Path 3: c, (12,9), d, (19,2), b, (13,8), a 
  with a strength of minD { (12,9), (19,2), (13,8) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative a 
is maxD { (13,8), (11,10), (12,9) } ≈D (13,8). 
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c → b: There are 2 paths from alternative c to alternative b. 
 

Path 1: c, (15,6), b with a strength of (15,6). 
 

Path 2: c, (12,9), d, (19,2), b 
  with a strength of minD { (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative b 
is maxD { (15,6), (12,9) } ≈D (15,6). 
 

c → d: There is only one path from alternative c to alternative d. 
 

Path 1: c, (12,9), d with a strength of (12,9). 
 
d → a: There are 2 paths from alternative d to alternative a. 
 

Path 1: d, (11,10), a with a strength of (11,10). 
 

Path 2: d, (19,2), b, (13,8), a 
  with a strength of minD { (19,2), (13,8) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative a 
is maxD { (11,10), (13,8) } ≈D (13,8). 
 

d → b: There are 2 paths from alternative d to alternative b. 
 

Path 1: d, (11,10), a, (14,7), c, (15,6), b 
  with a strength of minD { (11,10), (14,7), (15,6) } ≈D (11,10). 
 

Path 2: d, (19,2), b with a strength of (19,2). 
 

So the strength of the strongest path from alternative d to alternative b 
is maxD { (11,10), (19,2) } ≈D (19,2). 

 
d → c: There are 2 paths from alternative d to alternative c. 
 

Path 1: d, (11,10), a, (14,7), c 
with a strength of minD { (11,10), (14,7) } ≈D (11,10). 

 
Path 2: d, (19,2), b, (13,8), a, (14,7), c 

  with a strength of minD { (19,2), (13,8), (14,7) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative c 
is maxD { (11,10), (13,8) } ≈D (13,8). 
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The following table lists the strongest paths. The critical links of the 
strongest paths are underlined: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (14,7), c, 
(15,6), b a, (14,7), c a, (14,7), c, 

(12,9), d 

from b ... b, (13,8), a --- b, (13,8), a, 
(14,7), c 

b, (13,8), a, 
(14,7), c, 
(12,9), d 

from c ... c, (15,6), b, 
(13,8), a c, (15,6), b --- c, (12,9), d 

from d ... d, (19,2), b, 
(13,8), a d, (19,2), b 

d, (19,2), b, 
(13,8), a, 
(14,7), c 

--- 

 
The strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (14,7) (14,7) (12,9) 

PD[b,*] (13,8) --- (13,8) (12,9) 

PD[c,*] (13,8) (15,6) --- (12,9) 

PD[d,*] (13,8) (19,2) (13,8) --- 

 
xy ∈  if and only if PD[x,y] D PD[y,x]. So in example 1, we get            

 = {ab, ac, cb, da, db, dc}. 
 
x ∈  if and only if yx ∉  for all y ∈ A \ {x}. So in example 1, we get   

 = {d}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (6,15) (13,8) (14,7) b a PD[b,c] is updated from (6,15) to (13,8); 
pred[b,c] is updated from b to a 

2 a b d (2,19) (13,8) (10,11) b a PD[b,d] is updated from (2,19) to (10,11); 
pred[b,d] is updated from b to a 

3 a c b (15,6) (7,14) (8,13) c a  

4 a c d (12,9) (7,14) (10,11) c a  

5 a d b (19,2) (11,10) (8,13) d a  

6 a d c (9,12) (11,10) (14,7) d a PD[d,c] is updated from (9,12) to (11,10); 
pred[d,c] is updated from d to a 

7 b a c (14,7) (8,13) (13,8) a a  

8 b a d (10,11) (8,13) (10,11) a a  

9 b c a (7,14) (15,6) (13,8) c b PD[c,a] is updated from (7,14) to (13,8); 
pred[c,a] is updated from c to b 

10 b c d (12,9) (15,6) (10,11) c a  

11 b d a (11,10) (19,2) (13,8) d b PD[d,a] is updated from (11,10) to (13,8); 
pred[d,a] is updated from d to b 

12 b d c (11,10) (19,2) (13,8) a a PD[d,c] is updated from (11,10) to (13,8) 

13 c a b (8,13) (14,7) (15,6) a c PD[a,b] is updated from (8,13) to (14,7); 
pred[a,b] is updated from a to c 

14 c a d (10,11) (14,7) (12,9) a c PD[a,d] is updated from (10,11) to (12,9); 
pred[a,d] is updated from a to c 

15 c b a (13,8) (13,8) (13,8) b b  

16 c b d (10,11) (13,8) (12,9) a c PD[b,d] is updated from (10,11) to (12,9); 
pred[b,d] is updated from a to c 

17 c d a (13,8) (13,8) (13,8) b b  

18 c d b (19,2) (13,8) (15,6) d c  

19 d a b (14,7) (12,9) (19,2) c d  

20 d a c (14,7) (12,9) (13,8) a a  

21 d b a (13,8) (12,9) (13,8) b b  

22 d b c (13,8) (12,9) (13,8) a a  

23 d c a (13,8) (12,9) (13,8) b b  

24 d c b (15,6) (12,9) (19,2) c d  
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3.2. Example 2 
 
Example 2: 

 
3 voters a v b v c v d 
2 voters c v b v d v a 
2 voters d v a v b v c 
2 voters d v b v c v a 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 5 5 3 

N[b,*] 4 --- 7 5 

N[c,*] 4 2 --- 5 

N[d,*] 6 4 4 --- 

 
The corresponding digraph looks as follows: 
 
 

a b

cd

(5,4)

(5,4)

(7,2)

(5,4)

(6,3)

(5,4)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (5,4), b a, (5,4), c a, (5,4), b, 
(5,4), d 

from b ... b, (5,4), d, 
(6,3), a --- b, (7,2), c b, (5,4), d 

from c ... c, (5,4), d, 
(6,3), a 

c, (5,4), d, 
(6,3), a, 
(5,4), b 

--- c, (5,4), d 

from d ... d, (6,3), a d, (6,3), a, 
(5,4), b 

d, (6,3), a, 
(5,4), c --- 

 
Therefore, the strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (5,4) (5,4) (5,4) 

PD[b,*] (5,4) --- (7,2) (5,4) 

PD[c,*] (5,4) (5,4) --- (5,4) 

PD[d,*] (6,3) (5,4) (5,4) --- 

 
We get  = {bc, da} and  = {b, d}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (7,2) (4,5) (5,4) b a  

2 a b d (5,4) (4,5) (3,6) b a  

3 a c b (2,7) (4,5) (5,4) c a PD[c,b] is updated from (2,7) to (4,5); 
pred[c,b] is updated from c to a 

4 a c d (5,4) (4,5) (3,6) c a  

5 a d b (4,5) (6,3) (5,4) d a PD[d,b] is updated from (4,5) to (5,4); 
pred[d,b] is updated from d to a 

6 a d c (4,5) (6,3) (5,4) d a PD[d,c] is updated from (4,5) to (5,4); 
pred[d,c] is updated from d to a 

7 b a c (5,4) (5,4) (7,2) a b  

8 b a d (3,6) (5,4) (5,4) a b PD[a,d] is updated from (3,6) to (5,4); 
pred[a,d] is updated from a to b 

9 b c a (4,5) (4,5) (4,5) c b  

10 b c d (5,4) (4,5) (5,4) c b  

11 b d a (6,3) (5,4) (4,5) d b  

12 b d c (5,4) (5,4) (7,2) a b  

13 c a b (5,4) (5,4) (4,5) a a  

14 c a d (5,4) (5,4) (5,4) b c  

15 c b a (4,5) (7,2) (4,5) b c  

16 c b d (5,4) (7,2) (5,4) b c  

17 c d a (6,3) (5,4) (4,5) d c  

18 c d b (5,4) (5,4) (4,5) a a  

19 d a b (5,4) (5,4) (5,4) a a  

20 d a c (5,4) (5,4) (5,4) a a  

21 d b a (4,5) (5,4) (6,3) b d PD[b,a] is updated from (4,5) to (5,4); 
pred[b,a] is updated from b to d 

22 d b c (7,2) (5,4) (5,4) b a  

23 d c a (4,5) (5,4) (6,3) c d PD[c,a] is updated from (4,5) to (5,4); 
pred[c,a] is updated from c to d 

24 d c b (4,5) (5,4) (5,4) a a PD[c,b] is updated from (4,5) to (5,4) 
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3.3. Example 3 
 

Example 3: 
 
12 voters a v b v c v d 
6 voters a v d v b v c 
9 voters b v c v d v a 
15 voters c v d v a v b 
21 voters d v b v a v c 

 
The pairwise matrix N looks as follows: 

 
 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 33 39 18 

N[b,*] 30 --- 48 21 

N[c,*] 24 15 --- 36 

N[d,*] 45 42 27 --- 

 
The corresponding digraph looks as follows: 

 
 

 
 

  

a b 

c d 

(33,30) 

(39,24) 

(48,15) 

(36,27) 

(45,18) 

(42,21) 
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The strongest paths are: 

 ... to a ... to b ... to c ... to d 

from a ... --- 
a, (39,24), c, 
(36,27), d, 
(42,21), b 

a, (39,24), c a, (39,24), c, 
(36,27), d 

from b ... 
b, (48,15), c, 
(36,27), d, 
(45,18), a 

--- b, (48,15), c b, (48,15), c, 
(36,27), d 

from c ... c, (36,27), d, 
(45,18), a 

c, (36,27), d, 
(42,21), b --- c, (36,27), d 

from d ... d, (45,18), a d, (42,21), b d, (42,21), b, 
(48,15), c --- 

Therefore, the strengths of the strongest paths are: 

 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (36,27) (39,24) (36,27) 

PD[b,*] (36,27) --- (48,15) (36,27) 

PD[c,*] (36,27) (36,27) --- (36,27) 

PD[d,*] (45,18) (42,21) (42,21) --- 

 
We get  = {ac, bc, da, db, dc} and  = {d}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (48,15) (30,33) (39,24) b a  

2 a b d (21,42) (30,33) (18,45) b a  

3 a c b (15,48) (24,39) (33,30) c a PD[c,b] is updated from (15,48) to (24,39); 
pred[c,b] is updated from c to a 

4 a c d (36,27) (24,39) (18,45) c a  

5 a d b (42,21) (45,18) (33,30) d a  

6 a d c (27,36) (45,18) (39,24) d a PD[d,c] is updated from (27,36) to (39,24); 
pred[d,c] is updated from d to a 

7 b a c (39,24) (33,30) (48,15) a b  

8 b a d (18,45) (33,30) (21,42) a b PD[a,d] is updated from (18,45) to (21,42); 
pred[a,d] is updated from a to b 

9 b c a (24,39) (24,39) (30,33) c b  

10 b c d (36,27) (24,39) (21,42) c b  

11 b d a (45,18) (42,21) (30,33) d b  

12 b d c (39,24) (42,21) (48,15) a b PD[d,c] is updated from (39,24) to (42,21); 
pred[d,c] is updated from a to b 

13 c a b (33,30) (39,24) (24,39) a a  

14 c a d (21,42) (39,24) (36,27) b c PD[a,d] is updated from (21,42) to (36,27); 
pred[a,d] is updated from b to c 

15 c b a (30,33) (48,15) (24,39) b c  

16 c b d (21,42) (48,15) (36,27) b c PD[b,d] is updated from (21,42) to (36,27); 
pred[b,d] is updated from b to c 

17 c d a (45,18) (42,21) (24,39) d c  

18 c d b (42,21) (42,21) (24,39) d a  

19 d a b (33,30) (36,27) (42,21) a d PD[a,b] is updated from (33,30) to (36,27); 
pred[a,b] is updated from a to d 

20 d a c (39,24) (36,27) (42,21) a b  

21 d b a (30,33) (36,27) (45,18) b d PD[b,a] is updated from (30,33) to (36,27); 
pred[b,a] is updated from b to d 

22 d b c (48,15) (36,27) (42,21) b b  

23 d c a (24,39) (36,27) (45,18) c d PD[c,a] is updated from (24,39) to (36,27); 
pred[c,a] is updated from c to d 

24 d c b (24,39) (36,27) (42,21) a d PD[c,b] is updated from (24,39) to (36,27); 
pred[c,b] is updated from a to d 
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3.4. Example 4 
 

Example 4: 
 
6 voters a v c v d v b 
1 voter b v a v d v c 
3 voters c v b v d v a 
3 voters d v b v a v c 
2 voters d v c v b v a 

 
The pairwise matrix N looks as follows: 

 
 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 6 10 7 

N[b,*] 9 --- 4 4 

N[c,*] 5 11 --- 9 

N[d,*] 8 11 6 --- 

 
The corresponding digraph looks as follows: 

 

 
  

a b 

c d 

(9,6) 

(10,5) 

(11,4) 

(9,6) 

(8,7) 

(11,4) 
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The strongest paths are: 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (10,5), c, 
(11,4), b a, (10,5), c a, (10,5), c, 

(9,6), d 

from b ... b, (9,6), a --- b, (9,6), a, 
(10,5), c 

b, (9,6), a, 
(10,5), c, 
(9,6), d 

from c ... c, (11,4), b, 
(9,6), a c, (11,4), b --- c, (9,6), d 

from d ... d, (11,4), b, 
(9,6), a d, (11,4), b 

d, (11,4), b, 
(9,6), a, 
(10,5), c 

--- 

Therefore, the strengths of the strongest paths are: 

 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (10,5) (10,5) (9,6) 

PD[b,*] (9,6) --- (9,6) (9,6) 

PD[c,*] (9,6) (11,4) --- (9,6) 

PD[d,*] (9,6) (11,4) (9,6) --- 

 
We get  = {ab, ac, cb, db} and  = {a, d}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (4,11) (9,6) (10,5) b a PD[b,c] is updated from (4,11) to (9,6); 
pred[b,c] is updated from b to a 

2 a b d (4,11) (9,6) (7,8) b a PD[b,d] is updated from (4,11) to (7,8); 
pred[b,d] is updated from b to a 

3 a c b (11,4) (5,10) (6,9) c a  

4 a c d (9,6) (5,10) (7,8) c a  

5 a d b (11,4) (8,7) (6,9) d a  

6 a d c (6,9) (8,7) (10,5) d a PD[d,c] is updated from (6,9) to (8,7); 
pred[d,c] is updated from d to a 

7 b a c (10,5) (6,9) (9,6) a a  

8 b a d (7,8) (6,9) (7,8) a a  

9 b c a (5,10) (11,4) (9,6) c b PD[c,a] is updated from (5,10) to (9,6); 
pred[c,a] is updated from c to b 

10 b c d (9,6) (11,4) (7,8) c a  

11 b d a (8,7) (11,4) (9,6) d b PD[d,a] is updated from (8,7) to (9,6); 
pred[d,a] is updated from d to b 

12 b d c (8,7) (11,4) (9,6) a a PD[d,c] is updated from (8,7) to (9,6) 

13 c a b (6,9) (10,5) (11,4) a c PD[a,b] is updated from (6,9) to (10,5); 
pred[a,b] is updated from a to c 

14 c a d (7,8) (10,5) (9,6) a c PD[a,d] is updated from (7,8) to (9,6); 
pred[a,d] is updated from a to c 

15 c b a (9,6) (9,6) (9,6) b b  

16 c b d (7,8) (9,6) (9,6) a c PD[b,d] is updated from (7,8) to (9,6); 
pred[b,d] is updated from a to c 

17 c d a (9,6) (9,6) (9,6) b b  

18 c d b (11,4) (9,6) (11,4) d c  

19 d a b (10,5) (9,6) (11,4) c d  

20 d a c (10,5) (9,6) (9,6) a a  

21 d b a (9,6) (9,6) (9,6) b b  

22 d b c (9,6) (9,6) (9,6) a a  

23 d c a (9,6) (9,6) (9,6) b b  

24 d c b (11,4) (9,6) (11,4) c d  
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3.5. Example 5 
 

The basic idea for the following example has been proposed by Cretney 
(1998). 
 
3.5.1. Situation #1 

 
Example 5 (old): 

 
3 voters a v d v e v b v c v f 
3 voters b v f v e v c v d v a 
4 voters c v a v b v f v d v e 
1 voter d v b v c v e v f v a 
4 voters d v e v f v a v b v c 
2 voters e v c v b v d v f v a 
2 voters f v a v c v d v b v e 

 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] Nold[*,e] Nold[*,f] 

Nold[a,*] --- 13 9 9 9 7 

Nold[b,*] 6 --- 11 9 10 13 

Nold[c,*] 10 8 --- 11 7 10 

Nold[d,*] 10 10 8 --- 14 10 

Nold[e,*] 10 9 12 5 --- 10 

Nold[f,*] 12 6 9 9 9 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(13,6)

(14,5)

(11,8)

e

f

(10,9)

(12,7)

(10,9)

(10,9) (10,9)

(10,9)

(10,9)

(10,9)

(10,9) (11,8)

(12,7)

(13,6)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (13,6), b a, (13,6), b, 
(11,8), c 

a, (13,6), b, 
(11,8), c, 
(11,8), d 

a, (13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

a, (13,6), b, 
(13,6), f 

from b ... b, (13,6), f, 
(12,7), a --- b, (11,8), c b, (11,8), c, 

(11,8), d 

b, (11,8), c, 
(11,8), d, 
(14,5), e 

b, (13,6), f 

from c ... c, (10,9), a c, (10,9), a, 
(13,6), b --- c, (11,8), d c, (11,8), d, 

(14,5), e c, (10,9), f 

from d ... d, (10,9), a d, (10,9), b d, (14,5), e, 
(12,7), c --- d, (14,5), e d, (10,9), f 

from e ... e, (10,9), a e, (10,9), a, 
(13,6), b e, (12,7), c e, (12,7), c, 

(11,8), d --- e, (10,9), f 

from f ... f, (12,7), a f, (12,7), a, 
(13,6), b 

f, (12,7), a, 
(13,6), b, 
(11,8), c 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

--- 

 
We get old = {ab, ac, ad, ae, af, bc, bd, be, bf, dc, de, ec, fc, fd, fe} and 

old = {a}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 120 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (11,8) (6,13) (9,10) b a  

2 a b d (9,10) (6,13) (9,10) b a  

3 a b e (10,9) (6,13) (9,10) b a  

4 a b f (13,6) (6,13) (7,12) b a  

5 a c b (8,11) (10,9) (13,6) c a PD[c,b] is updated from (8,11) to (10,9); 
pred[c,b] is updated from c to a 

6 a c d (11,8) (10,9) (9,10) c a  

7 a c e (7,12) (10,9) (9,10) c a PD[c,e] is updated from (7,12) to (9,10); 
pred[c,e] is updated from c to a 

8 a c f (10,9) (10,9) (7,12) c a  

9 a d b (10,9) (10,9) (13,6) d a  

10 a d c (8,11) (10,9) (9,10) d a PD[d,c] is updated from (8,11) to (9,10); 
pred[d,c] is updated from d to a 

11 a d e (14,5) (10,9) (9,10) d a  

12 a d f (10,9) (10,9) (7,12) d a  

13 a e b (9,10) (10,9) (13,6) e a PD[e,b] is updated from (9,10) to (10,9); 
pred[e,b] is updated from e to a 

14 a e c (12,7) (10,9) (9,10) e a  

15 a e d (5,14) (10,9) (9,10) e a PD[e,d] is updated from (5,14) to (9,10); 
pred[e,d] is updated from e to a 

16 a e f (10,9) (10,9) (7,12) e a  

17 a f b (6,13) (12,7) (13,6) f a PD[f,b] is updated from (6,13) to (12,7); 
pred[f,b] is updated from f to a 

18 a f c (9,10) (12,7) (9,10) f a  

19 a f d (9,10) (12,7) (9,10) f a  

20 a f e (9,10) (12,7) (9,10) f a  

21 b a c (9,10) (13,6) (11,8) a b PD[a,c] is updated from (9,10) to (11,8); 
pred[a,c] is updated from a to b 

22 b a d (9,10) (13,6) (9,10) a b  

23 b a e (9,10) (13,6) (10,9) a b PD[a,e] is updated from (9,10) to (10,9); 
pred[a,e] is updated from a to b 

24 b a f (7,12) (13,6) (13,6) a b PD[a,f] is updated from (7,12) to (13,6); 
pred[a,f] is updated from a to b 

25 b c a (10,9) (10,9) (6,13) c b  

26 b c d (11,8) (10,9) (9,10) c b  

27 b c e (9,10) (10,9) (10,9) a b PD[c,e] is updated from (9,10) to (10,9); 
pred[c,e] is updated from a to b 

28 b c f (10,9) (10,9) (13,6) c b  

29 b d a (10,9) (10,9) (6,13) d b  

30 b d c (9,10) (10,9) (11,8) a b PD[d,c] is updated from (9,10) to (10,9); 
pred[d,c] is updated from a to b 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 b d e (14,5) (10,9) (10,9) d b  

32 b d f (10,9) (10,9) (13,6) d b  

33 b e a (10,9) (10,9) (6,13) e b  

34 b e c (12,7) (10,9) (11,8) e b  

35 b e d (9,10) (10,9) (9,10) a b  

36 b e f (10,9) (10,9) (13,6) e b  

37 b f a (12,7) (12,7) (6,13) f b  

38 b f c (9,10) (12,7) (11,8) f b PD[f,c] is updated from (9,10) to (11,8); 
pred[f,c] is updated from f to b 

39 b f d (9,10) (12,7) (9,10) f b  

40 b f e (9,10) (12,7) (10,9) f b PD[f,e] is updated from (9,10) to (10,9); 
pred[f,e] is updated from f to b 

41 c a b (13,6) (11,8) (10,9) a a  

42 c a d (9,10) (11,8) (11,8) a c PD[a,d] is updated from (9,10) to (11,8); 
pred[a,d] is updated from a to c 

43 c a e (10,9) (11,8) (10,9) b b  

44 c a f (13,6) (11,8) (10,9) b c  

45 c b a (6,13) (11,8) (10,9) b c PD[b,a] is updated from (6,13) to (10,9); 
pred[b,a] is updated from b to c 

46 c b d (9,10) (11,8) (11,8) b c PD[b,d] is updated from (9,10) to (11,8); 
pred[b,d] is updated from b to c 

47 c b e (10,9) (11,8) (10,9) b b  

48 c b f (13,6) (11,8) (10,9) b c  

49 c d a (10,9) (10,9) (10,9) d c  

50 c d b (10,9) (10,9) (10,9) d a  

51 c d e (14,5) (10,9) (10,9) d b  

52 c d f (10,9) (10,9) (10,9) d c  

53 c e a (10,9) (12,7) (10,9) e c  

54 c e b (10,9) (12,7) (10,9) a a  

55 c e d (9,10) (12,7) (11,8) a c PD[e,d] is updated from (9,10) to (11,8); 
pred[e,d] is updated from a to c 

56 c e f (10,9) (12,7) (10,9) e c  

57 c f a (12,7) (11,8) (10,9) f c  

58 c f b (12,7) (11,8) (10,9) a a  

59 c f d (9,10) (11,8) (11,8) f c PD[f,d] is updated from (9,10) to (11,8); 
pred[f,d] is updated from f to c 

60 c f e (10,9) (11,8) (10,9) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

61 d a b (13,6) (11,8) (10,9) a d  

62 d a c (11,8) (11,8) (10,9) b b  

63 d a e (10,9) (11,8) (14,5) b d PD[a,e] is updated from (10,9) to (11,8); 
pred[a,e] is updated from b to d 

64 d a f (13,6) (11,8) (10,9) b d  

65 d b a (10,9) (11,8) (10,9) c d  

66 d b c (11,8) (11,8) (10,9) b b  

67 d b e (10,9) (11,8) (14,5) b d PD[b,e] is updated from (10,9) to (11,8); 
pred[b,e] is updated from b to d 

68 d b f (13,6) (11,8) (10,9) b d  

69 d c a (10,9) (11,8) (10,9) c d  

70 d c b (10,9) (11,8) (10,9) a d  

71 d c e (10,9) (11,8) (14,5) b d PD[c,e] is updated from (10,9) to (11,8); 
pred[c,e] is updated from b to d 

72 d c f (10,9) (11,8) (10,9) c d  

73 d e a (10,9) (11,8) (10,9) e d  

74 d e b (10,9) (11,8) (10,9) a d  

75 d e c (12,7) (11,8) (10,9) e b  

76 d e f (10,9) (11,8) (10,9) e d  

77 d f a (12,7) (11,8) (10,9) f d  

78 d f b (12,7) (11,8) (10,9) a d  

79 d f c (11,8) (11,8) (10,9) b b  

80 d f e (10,9) (11,8) (14,5) b d PD[f,e] is updated from (10,9) to (11,8); 
pred[f,e] is updated from b to d 

81 e a b (13,6) (11,8) (10,9) a a  

82 e a c (11,8) (11,8) (12,7) b e  

83 e a d (11,8) (11,8) (11,8) c c  

84 e a f (13,6) (11,8) (10,9) b e  

85 e b a (10,9) (11,8) (10,9) c e  

86 e b c (11,8) (11,8) (12,7) b e  

87 e b d (11,8) (11,8) (11,8) c c  

88 e b f (13,6) (11,8) (10,9) b e  

89 e c a (10,9) (11,8) (10,9) c e  

90 e c b (10,9) (11,8) (10,9) a a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

91 e c d (11,8) (11,8) (11,8) c c  

92 e c f (10,9) (11,8) (10,9) c e  

93 e d a (10,9) (14,5) (10,9) d e  

94 e d b (10,9) (14,5) (10,9) d a  

95 e d c (10,9) (14,5) (12,7) b e PD[d,c] is updated from (10,9) to (12,7); 
pred[d,c] is updated from b to e 

96 e d f (10,9) (14,5) (10,9) d e  

97 e f a (12,7) (11,8) (10,9) f e  

98 e f b (12,7) (11,8) (10,9) a a  

99 e f c (11,8) (11,8) (12,7) b e  

100 e f d (11,8) (11,8) (11,8) c c  

101 f a b (13,6) (13,6) (12,7) a a  

102 f a c (11,8) (13,6) (11,8) b b  

103 f a d (11,8) (13,6) (11,8) c c  

104 f a e (11,8) (13,6) (11,8) d d  

105 f b a (10,9) (13,6) (12,7) c f PD[b,a] is updated from (10,9) to (12,7); 
pred[b,a] is updated from c to f 

106 f b c (11,8) (13,6) (11,8) b b  

107 f b d (11,8) (13,6) (11,8) c c  

108 f b e (11,8) (13,6) (11,8) d d  

109 f c a (10,9) (10,9) (12,7) c f  

110 f c b (10,9) (10,9) (12,7) a a  

111 f c d (11,8) (10,9) (11,8) c c  

112 f c e (11,8) (10,9) (11,8) d d  

113 f d a (10,9) (10,9) (12,7) d f  

114 f d b (10,9) (10,9) (12,7) d a  

115 f d c (12,7) (10,9) (11,8) e b  

116 f d e (14,5) (10,9) (11,8) d d  

117 f e a (10,9) (10,9) (12,7) e f  

118 f e b (10,9) (10,9) (12,7) a a  

119 f e c (12,7) (10,9) (11,8) e b  

120 f e d (11,8) (10,9) (11,8) c c  
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3.5.2. Situation #2 
 
When 2 a v e v f v c v b v d ballots are added, then the pairwise 

matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] Nnew[*,f] 

Nnew[a,*] --- 15 11 11 11 9 

Nnew[b,*] 6 --- 11 11 10 13 

Nnew[c,*] 10 10 --- 13 7 10 

Nnew[d,*] 10 10 8 --- 14 10 

Nnew[e,*] 10 11 14 7 --- 12 

Nnew[f,*] 12 8 11 11 9 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(15,6)

(14,7)

(11,10)

e

f

(11,10)

(14,7)

(11,10)

(11,10) (11,10)

(11,10)

(11,10)

(11,10)

(12,9) (13,8)

(12,9)

(13,8)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (15,6), b a, (11,10), c a, (11,10), d a, (11,10), e a, (15,6), b, 
(13,8), f  

from b ... b, (13,8), f, 
(12,9), a --- b, (11,10), c b, (11,10), d b, (11,10), d, 

(14,7), e b, (13,8), f 

from c ... 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

--- c, (13,8), d c, (13,8), d, 
(14,7), e 

c, (13,8), d, 
(14,7), e, 
(12,9), f 

from d ... 
d, (14,7), e, 

(12,9), f, 
(12,9), a 

d, (14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

d, (14,7), e, 
(14,7), c --- d, (14,7), e d, (14,7), e, 

(12,9), f 

from e ... e, (12,9), f, 
(12,9), a 

e, (12,9), f, 
(12,9), a, 
(15,6), b 

e, (14,7), c e, (14,7), c, 
(13,8), d --- e, (12,9), f 

from f ... f, (12,9), a f, (12,9), a, 
(15,6), b f, (11,10), c f, (11,10), d f, (12,9), a, 

(11,10), e --- 

 
We get new = {ab, af, bf, ca, cb, cf, da, db, dc, de, df, ea, eb, ec, ef} and 

new = {d}. 
 
Thus the 2 a v e v f v c v b v d voters change the unique winner from 

alternative a to alternative d. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 120 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (11,10) (6,15) (11,10) b a  

2 a b d (11,10) (6,15) (11,10) b a  

3 a b e (10,11) (6,15) (11,10) b a  

4 a b f (13,8) (6,15) (9,12) b a  

5 a c b (10,11) (10,11) (15,6) c a  

6 a c d (13,8) (10,11) (11,10) c a  

7 a c e (7,14) (10,11) (11,10) c a PD[c,e] is updated from (7,14) to (10,11); 
pred[c,e] is updated from c to a 

8 a c f (10,11) (10,11) (9,12) c a  

9 a d b (10,11) (10,11) (15,6) d a  

10 a d c (8,13) (10,11) (11,10) d a PD[d,c] is updated from (8,13) to (10,11); 
pred[d,c] is updated from d to a 

11 a d e (14,7) (10,11) (11,10) d a  

12 a d f (10,11) (10,11) (9,12) d a  

13 a e b (11,10) (10,11) (15,6) e a  

14 a e c (14,7) (10,11) (11,10) e a  

15 a e d (7,14) (10,11) (11,10) e a PD[e,d] is updated from (7,14) to (10,11); 
pred[e,d] is updated from e to a 

16 a e f (12,9) (10,11) (9,12) e a  

17 a f b (8,13) (12,9) (15,6) f a PD[f,b] is updated from (8,13) to (12,9); 
pred[f,b] is updated from f to a 

18 a f c (11,10) (12,9) (11,10) f a  

19 a f d (11,10) (12,9) (11,10) f a  

20 a f e (9,12) (12,9) (11,10) f a PD[f,e] is updated from (9,12) to (11,10); 
pred[f,e] is updated from f to a 

21 b a c (11,10) (15,6) (11,10) a b  

22 b a d (11,10) (15,6) (11,10) a b  

23 b a e (11,10) (15,6) (10,11) a b  

24 b a f (9,12) (15,6) (13,8) a b PD[a,f] is updated from (9,12) to (13,8); 
pred[a,f] is updated from a to b 

25 b c a (10,11) (10,11) (6,15) c b  

26 b c d (13,8) (10,11) (11,10) c b  

27 b c e (10,11) (10,11) (10,11) a b  

28 b c f (10,11) (10,11) (13,8) c b  

29 b d a (10,11) (10,11) (6,15) d b  

30 b d c (10,11) (10,11) (11,10) a b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 b d e (14,7) (10,11) (10,11) d b  

32 b d f (10,11) (10,11) (13,8) d b  

33 b e a (10,11) (11,10) (6,15) e b  

34 b e c (14,7) (11,10) (11,10) e b  

35 b e d (10,11) (11,10) (11,10) a b PD[e,d] is updated from (10,11) to (11,10); 
pred[e,d] is updated from a to b 

36 b e f (12,9) (11,10) (13,8) e b  

37 b f a (12,9) (12,9) (6,15) f b  

38 b f c (11,10) (12,9) (11,10) f b  

39 b f d (11,10) (12,9) (11,10) f b  

40 b f e (11,10) (12,9) (10,11) a b  

41 c a b (15,6) (11,10) (10,11) a c  

42 c a d (11,10) (11,10) (13,8) a c  

43 c a e (11,10) (11,10) (10,11) a a  

44 c a f (13,8) (11,10) (10,11) b c  

45 c b a (6,15) (11,10) (10,11) b c PD[b,a] is updated from (6,15) to (10,11); 
pred[b,a] is updated from b to c 

46 c b d (11,10) (11,10) (13,8) b c  

47 c b e (10,11) (11,10) (10,11) b a  

48 c b f (13,8) (11,10) (10,11) b c  

49 c d a (10,11) (10,11) (10,11) d c  

50 c d b (10,11) (10,11) (10,11) d c  

51 c d e (14,7) (10,11) (10,11) d a  

52 c d f (10,11) (10,11) (10,11) d c  

53 c e a (10,11) (14,7) (10,11) e c  

54 c e b (11,10) (14,7) (10,11) e c  

55 c e d (11,10) (14,7) (13,8) b c PD[e,d] is updated from (11,10) to (13,8); 
pred[e,d] is updated from b to c 

56 c e f (12,9) (14,7) (10,11) e c  

57 c f a (12,9) (11,10) (10,11) f c  

58 c f b (12,9) (11,10) (10,11) a c  

59 c f d (11,10) (11,10) (13,8) f c  

60 c f e (11,10) (11,10) (10,11) a a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

61 d a b (15,6) (11,10) (10,11) a d  

62 d a c (11,10) (11,10) (10,11) a a  

63 d a e (11,10) (11,10) (14,7) a d  

64 d a f (13,8) (11,10) (10,11) b d  

65 d b a (10,11) (11,10) (10,11) c d  

66 d b c (11,10) (11,10) (10,11) b a  

67 d b e (10,11) (11,10) (14,7) b d PD[b,e] is updated from (10,11) to (11,10); 
pred[b,e] is updated from b to d 

68 d b f (13,8) (11,10) (10,11) b d  

69 d c a (10,11) (13,8) (10,11) c d  

70 d c b (10,11) (13,8) (10,11) c d  

71 d c e (10,11) (13,8) (14,7) a d PD[c,e] is updated from (10,11) to (13,8); 
pred[c,e] is updated from a to d 

72 d c f (10,11) (13,8) (10,11) c d  

73 d e a (10,11) (13,8) (10,11) e d  

74 d e b (11,10) (13,8) (10,11) e d  

75 d e c (14,7) (13,8) (10,11) e a  

76 d e f (12,9) (13,8) (10,11) e d  

77 d f a (12,9) (11,10) (10,11) f d  

78 d f b (12,9) (11,10) (10,11) a d  

79 d f c (11,10) (11,10) (10,11) f a  

80 d f e (11,10) (11,10) (14,7) a d  

81 e a b (15,6) (11,10) (11,10) a e  

82 e a c (11,10) (11,10) (14,7) a e  

83 e a d (11,10) (11,10) (13,8) a c  

84 e a f (13,8) (11,10) (12,9) b e  

85 e b a (10,11) (11,10) (10,11) c e  

86 e b c (11,10) (11,10) (14,7) b e  

87 e b d (11,10) (11,10) (13,8) b c  

88 e b f (13,8) (11,10) (12,9) b e  

89 e c a (10,11) (13,8) (10,11) c e  

90 e c b (10,11) (13,8) (11,10) c e PD[c,b] is updated from (10,11) to (11,10); 
pred[c,b] is updated from c to e 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

91 e c d (13,8) (13,8) (13,8) c c  

92 e c f (10,11) (13,8) (12,9) c e PD[c,f] is updated from (10,11) to (12,9); 
pred[c,f] is updated from c to e 

93 e d a (10,11) (14,7) (10,11) d e  

94 e d b (10,11) (14,7) (11,10) d e PD[d,b] is updated from (10,11) to (11,10); 
pred[d,b] is updated from d to e 

95 e d c (10,11) (14,7) (14,7) a e PD[d,c] is updated from (10,11) to (14,7); 
pred[d,c] is updated from a to e 

96 e d f (10,11) (14,7) (12,9) d e PD[d,f] is updated from (10,11) to (12,9); 
pred[d,f] is updated from d to e 

97 e f a (12,9) (11,10) (10,11) f e  

98 e f b (12,9) (11,10) (11,10) a e  

99 e f c (11,10) (11,10) (14,7) f e  

100 e f d (11,10) (11,10) (13,8) f c  

101 f a b (15,6) (13,8) (12,9) a a  

102 f a c (11,10) (13,8) (11,10) a f  

103 f a d (11,10) (13,8) (11,10) a f  

104 f a e (11,10) (13,8) (11,10) a a  

105 f b a (10,11) (13,8) (12,9) c f PD[b,a] is updated from (10,11) to (12,9); 
pred[b,a] is updated from c to f 

106 f b c (11,10) (13,8) (11,10) b f  

107 f b d (11,10) (13,8) (11,10) b f  

108 f b e (11,10) (13,8) (11,10) d a  

109 f c a (10,11) (12,9) (12,9) c f PD[c,a] is updated from (10,11) to (12,9); 
pred[c,a] is updated from c to f 

110 f c b (11,10) (12,9) (12,9) e a PD[c,b] is updated from (11,10) to (12,9); 
pred[c,b] is updated from e to a 

111 f c d (13,8) (12,9) (11,10) c f  

112 f c e (13,8) (12,9) (11,10) d a  

113 f d a (10,11) (12,9) (12,9) d f PD[d,a] is updated from (10,11) to (12,9); 
pred[d,a] is updated from d to f 

114 f d b (11,10) (12,9) (12,9) e a PD[d,b] is updated from (11,10) to (12,9); 
pred[d,b] is updated from e to a 

115 f d c (14,7) (12,9) (11,10) e f  

116 f d e (14,7) (12,9) (11,10) d a  

117 f e a (10,11) (12,9) (12,9) e f PD[e,a] is updated from (10,11) to (12,9); 
pred[e,a] is updated from e to f 

118 f e b (11,10) (12,9) (12,9) e a PD[e,b] is updated from (11,10) to (12,9); 
pred[e,b] is updated from e to a 

119 f e c (14,7) (12,9) (11,10) e f  

120 f e d (13,8) (12,9) (11,10) c f  
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3.6. Example 6 
 

Suppose an alternative e is added with N[d,e] > 0 and N[e,d] = 0 for at least one 
already running alternative d. Then independence from Pareto-dominated 
alternatives (IPDA) says that we must get: 

 
(3.6.1)  ∀ x,y ∈ A \ {e}: xy ∈ old ⇔ xy ∈ new. 
 
(3.6.2)  ∀ x ∈ A \ {e}: x ∈ old ⇔ x ∈ new. 
 
The following example demonstrates that the Schulze method, as defined 

in section 2.2, does not satisfy IPDA. This example has been proposed by 
Eppley (2003). 

 
3.6.1. Situation #1 
 
Example 6 (old): 

 
3 voters a v b v d v c 
5 voters a v d v b v c 
1 voter a v d v c v b 
2 voters b v a v d v c 
2 voters b v d v c v a 
4 voters c v a v b v d 
6 voters c v b v a v d 
2 voters d v b v c v a 
5 voters d v c v a v b 
 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] 

Nold[a,*] --- 18 11 21 

Nold[b,*] 12 --- 14 17 

Nold[c,*] 19 16 --- 10 

Nold[d,*] 9 13 20 --- 

 
The corresponding digraph looks as follows: 
 

 
  

a b 

c d  

(18,12) 

(19,11) (17,13) 

(21,9) (16,14) 

(20,10) 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d 

from b ... 
b, (17,13), d, 

(20,10), c, 
(19,11), a 

--- b, (17,13), d, 
(20,10), c b, (17,13), d 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- 

 
We get old = {ab, ac, ad, cb, db, dc} and old = {a}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (14,16) (12,18) (11,19) b a  

2 a b d (17,13) (12,18) (21,9) b a  

3 a c b (16,14) (19,11) (18,12) c a PD[c,b] is updated from (16,14) to (18,12); 
pred[c,b] is updated from c to a 

4 a c d (10,20) (19,11) (21,9) c a PD[c,d] is updated from (10,20) to (19,11); 
pred[c,d] is updated from c to a 

5 a d b (13,17) (9,21) (18,12) d a  

6 a d c (20,10) (9,21) (11,19) d a  

7 b a c (11,19) (18,12) (14,16) a b PD[a,c] is updated from (11,19) to (14,16); 
pred[a,c] is updated from a to b 

8 b a d (21,9) (18,12) (17,13) a b  

9 b c a (19,11) (18,12) (12,18) c b  

10 b c d (19,11) (18,12) (17,13) a b  

11 b d a (9,21) (13,17) (12,18) d b PD[d,a] is updated from (9,21) to (12,18); 
pred[d,a] is updated from d to b 

12 b d c (20,10) (13,17) (14,16) d b  

13 c a b (18,12) (14,16) (18,12) a a  

14 c a d (21,9) (14,16) (19,11) a a  

15 c b a (12,18) (14,16) (19,11) b c PD[b,a] is updated from (12,18) to (14,16); 
pred[b,a] is updated from b to c 

16 c b d (17,13) (14,16) (19,11) b a  

17 c d a (12,18) (20,10) (19,11) b c PD[d,a] is updated from (12,18) to (19,11); 
pred[d,a] is updated from b to c 

18 c d b (13,17) (20,10) (18,12) d a PD[d,b] is updated from (13,17) to (18,12); 
pred[d,b] is updated from d to a 

19 d a b (18,12) (21,9) (18,12) a a  

20 d a c (14,16) (21,9) (20,10) b d PD[a,c] is updated from (14,16) to (20,10); 
pred[a,c] is updated from b to d 

21 d b a (14,16) (17,13) (19,11) c c PD[b,a] is updated from (14,16) to (17,13) 

22 d b c (14,16) (17,13) (20,10) b d PD[b,c] is updated from (14,16) to (17,13); 
pred[b,c] is updated from b to d 

23 d c a (19,11) (19,11) (19,11) c c  

24 d c b (18,12) (19,11) (18,12) a a  
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3.6.2. Situation #2 
 
Suppose alternative e is added as follows: 

 
Example 6 (new): 

 
3 voters a v b v d v e v c 
5 voters a v d v e v b v c 
1 voter a v d v e v c v b 
2 voters b v a v d v e v c 
2 voters b v d v e v c v a 
4 voters c v a v b v d v e 
6 voters c v b v a v d v e 
2 voters d v b v e v c v a 
5 voters d v e v c v a v b 
 
The pairwise matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] 

Nnew[a,*] --- 18 11 21 21 

Nnew[b,*] 12 --- 14 17 19 

Nnew[c,*] 19 16 --- 10 10 

Nnew[d,*] 9 13 20 --- 30 

Nnew[e,*] 9 11 20 0 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(18,12)

(19,11)

(16,14)

(20,10)

(21,9)

(19,11)

e

(20,10)(30,0)

(17,13)(21,9)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d a, (21,9), e 

from b ... 
b, (19,11), e, 

(20,10), c, 
(19,11), a 

--- b, (19,11), e, 
(20,10), c 

b, (19,11), e, 
(20,10), c, 
(19,11), a, 
(21,9), d 

b, (19,11), e 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 
c, (19,11), a, 

(21,9), e 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- d, (30,0), e 

from e ... e, (20,10), c, 
(19,11), a 

e, (20,10), c, 
(19,11), a, 
(18,12), b 

e, (20,10), c 
e, (20,10), c, 
(19,11), a, 
(21,9), d 

--- 

 
We get new = {ac, ad, ae, ba, bc, bd, be, dc, de, ec} and new = {b}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 60 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (14,16) (12,18) (11,19) b a  

2 a b d (17,13) (12,18) (21,9) b a  

3 a b e (19,11) (12,18) (21,9) b a  

4 a c b (16,14) (19,11) (18,12) c a PD[c,b] is updated from (16,14) to (18,12); 
pred[c,b] is updated from c to a 

5 a c d (10,20) (19,11) (21,9) c a PD[c,d] is updated from (10,20) to (19,11); 
pred[c,d] is updated from c to a 

6 a c e (10,20) (19,11) (21,9) c a PD[c,e] is updated from (10,20) to (19,11); 
pred[c,e] is updated from c to a 

7 a d b (13,17) (9,21) (18,12) d a  

8 a d c (20,10) (9,21) (11,19) d a  

9 a d e (30,0) (9,21) (21,9) d a  

10 a e b (11,19) (9,21) (18,12) e a  

11 a e c (20,10) (9,21) (11,19) e a  

12 a e d (0,30) (9,21) (21,9) e a PD[e,d] is updated from (0,30) to (9,21); 
pred[e,d] is updated from e to a 

13 b a c (11,19) (18,12) (14,16) a b PD[a,c] is updated from (11,19) to (14,16); 
pred[a,c] is updated from a to b 

14 b a d (21,9) (18,12) (17,13) a b  

15 b a e (21,9) (18,12) (19,11) a b  

16 b c a (19,11) (18,12) (12,18) c b  

17 b c d (19,11) (18,12) (17,13) a b  

18 b c e (19,11) (18,12) (19,11) a b  

19 b d a (9,21) (13,17) (12,18) d b PD[d,a] is updated from (9,21) to (12,18); 
pred[d,a] is updated from d to b 

20 b d c (20,10) (13,17) (14,16) d b  

21 b d e (30,0) (13,17) (19,11) d b  

22 b e a (9,21) (11,19) (12,18) e b PD[e,a] is updated from (9,21) to (11,19); 
pred[e,a] is updated from e to b 

23 b e c (20,10) (11,19) (14,16) e b  

24 b e d (9,21) (11,19) (17,13) a b PD[e,d] is updated from (9,21) to (11,19); 
pred[e,d] is updated from a to b 

25 c a b (18,12) (14,16) (18,12) a a  

26 c a d (21,9) (14,16) (19,11) a a  

27 c a e (21,9) (14,16) (19,11) a a  

28 c b a (12,18) (14,16) (19,11) b c PD[b,a] is updated from (12,18) to (14,16); 
pred[b,a] is updated from b to c 

29 c b d (17,13) (14,16) (19,11) b a  

30 c b e (19,11) (14,16) (19,11) b a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (12,18) (20,10) (19,11) b c PD[d,a] is updated from (12,18) to (19,11); 
pred[d,a] is updated from b to c 

32 c d b (13,17) (20,10) (18,12) d a PD[d,b] is updated from (13,17) to (18,12); 
pred[d,b] is updated from d to a 

33 c d e (30,0) (20,10) (19,11) d a  

34 c e a (11,19) (20,10) (19,11) b c PD[e,a] is updated from (11,19) to (19,11); 
pred[e,a] is updated from b to c 

35 c e b (11,19) (20,10) (18,12) e a PD[e,b] is updated from (11,19) to (18,12); 
pred[e,b] is updated from e to a 

36 c e d (11,19) (20,10) (19,11) b a PD[e,d] is updated from (11,19) to (19,11); 
pred[e,d] is updated from b to a 

37 d a b (18,12) (21,9) (18,12) a a  

38 d a c (14,16) (21,9) (20,10) b d PD[a,c] is updated from (14,16) to (20,10); 
pred[a,c] is updated from b to d 

39 d a e (21,9) (21,9) (30,0) a d  

40 d b a (14,16) (17,13) (19,11) c c PD[b,a] is updated from (14,16) to (17,13) 

41 d b c (14,16) (17,13) (20,10) b d PD[b,c] is updated from (14,16) to (17,13); 
pred[b,c] is updated from b to d 

42 d b e (19,11) (17,13) (30,0) b d  

43 d c a (19,11) (19,11) (19,11) c c  

44 d c b (18,12) (19,11) (18,12) a a  

45 d c e (19,11) (19,11) (30,0) a d  

46 d e a (19,11) (19,11) (19,11) c c  

47 d e b (18,12) (19,11) (18,12) a a  

48 d e c (20,10) (19,11) (20,10) e d  

49 e a b (18,12) (21,9) (18,12) a a  

50 e a c (20,10) (21,9) (20,10) d e  

51 e a d (21,9) (21,9) (19,11) a a  

52 e b a (17,13) (19,11) (19,11) c c PD[b,a] is updated from (17,13) to (19,11) 

53 e b c (17,13) (19,11) (20,10) d e PD[b,c] is updated from (17,13) to (19,11); 
pred[b,c] is updated from d to e 

54 e b d (17,13) (19,11) (19,11) b a PD[b,d] is updated from (17,13) to (19,11); 
pred[b,d] is updated from b to a 

55 e c a (19,11) (19,11) (19,11) c c  

56 e c b (18,12) (19,11) (18,12) a a  

57 e c d (19,11) (19,11) (19,11) a a  

58 e d a (19,11) (30,0) (19,11) c c  

59 e d b (18,12) (30,0) (18,12) a a  

60 e d c (20,10) (30,0) (20,10) d e  
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3.7. Example 7 
 
When each voter v ∈ V casts a linear order v on A, then all definitions 

for D, that satisfy presumption (2.1.1), are equivalent. However, when some 
voters cast non-linear orders, then there are many possible definitions for the 
strength of a link. The following example illustrates how the different 
definitions for the strength of a link can lead to different winners. 
 
Example 7: 

 
6 voters a v b v c v d 
8 voters a ≈v b v c ≈v d 
8 voters a ≈v c v b ≈v d 
18 voters a ≈v c v d v b 
8 voters a ≈v c ≈v d v b 
40 voters b v a ≈v c ≈v d 
4 voters c v b v d v a 
9 voters c v d v a v b 
8 voters c ≈v d v a ≈v b 
14 voters d v a v b v c 
11 voters d v b v c v a 
4 voters d v c v a v b 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 67 28 40 

N[b,*] 55 --- 79 58 

N[c,*] 36 59 --- 45 

N[d,*] 50 72 29 --- 

 
The corresponding digraph looks as follows: 
 
 

 
  

a b 

c d  

(67,55) 

(36,28) 

(79,59) 

(45,29) 

(50,40) 

(72,58) 
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a) margin 
 

We get: (N[b,c],N[c,b]) margin (N[c,d],N[d,c]) margin (N[d,b],N[b,d]) 
margin (N[a,b],N[b,a]) margin (N[d,a],N[a,d]) margin (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a margin of N[b,c] – N[c,b] = 20 
cd with a margin of N[c,d] – N[d,c] = 16 
db with a margin of N[d,b] – N[b,d] = 14 
ab with a margin of N[a,b] – N[b,a] = 12 
da with a margin of N[d,a] – N[a,d] = 10 
ca with a margin of N[c,a] – N[a,c] = 8 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get margin = {ab, ac, ad, bc, bd, cd} and margin = {a}. 
 

Suppose, the strongest paths are calculated with the Floyd algorithm, as 
defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• Pmargin[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pmargin[j,k] Pmargin[j,i] Pmargin[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a Pmargin[b,d] is updated from (58,72) to 
(55,67); pred[b,d] is updated from b to a 

3 a c b (59,79) (36,28) (67,55) c a Pmargin[c,b] is updated from (59,79) to 
(36,28); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pmargin[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pmargin[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (55,67) a a  

9 b c a (36,28) (36,28) (55,67) c b  

10 b c d (45,29) (36,28) (55,67) c a  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pmargin[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (36,28) a a  

14 c a d (40,50) (67,55) (45,29) a c Pmargin[a,d] is updated from (40,50) to 
(67,55); pred[a,d] is updated from a to c 

15 c b a (55,67) (79,59) (36,28) b c Pmargin[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (55,67) (79,59) (45,29) a c Pmargin[b,d] is updated from (55,67) to 
(45,29); pred[b,d] is updated from a to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (36,28) d a  

19 d a b (67,55) (67,55) (72,58) a d  

20 d a c (67,55) (67,55) (72,58) b b  

21 d b a (36,28) (45,29) (50,40) c d Pmargin[b,a] is updated from (36,28) to 
(50,40); pred[b,a] is updated from c to d 

22 d b c (79,59) (45,29) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d Pmargin[c,a] is updated from (36,28) to 
(50,40); pred[c,a] is updated from c to d 

24 d c b (36,28) (45,29) (72,58) a d Pmargin[c,b] is updated from (36,28) to 
(72,58); pred[c,b] is updated from a to d 
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b) ratio 
 

We get: (N[c,d],N[d,c]) ratio (N[b,c],N[c,b]) ratio (N[c,a],N[a,c]) ratio 
(N[d,a],N[a,d]) ratio (N[d,b],N[b,d]) ratio (N[a,b],N[b,a]). 
 
The pairwise victories are: 
 

cd with a ratio of N[c,d] / N[d,c] = 1.552 
bc with a ratio of N[b,c] / N[c,b] = 1.339 
ca with a ratio of N[c,a] / N[a,c] = 1.286 
da with a ratio of N[d,a] / N[a,d] = 1.250 
db with a ratio of N[d,b] / N[b,d] = 1.241 
ab with a ratio of N[a,b] / N[b,a] = 1.218 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get ratio = {ba, bc, bd, ca, cd, da} and ratio = {b}. 
 

Suppose, the strongest paths are calculated with the Floyd algorithm, as 
defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• Pratio[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pratio[j,k] Pratio[j,i] Pratio[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a  

3 a c b (59,79) (36,28) (67,55) c a Pratio[c,b] is updated from (59,79) to 
(67,55); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pratio[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pratio[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (58,72) a b Pratio[a,d] is updated from (40,50) to 
(58,72); pred[a,d] is updated from a to b 

9 b c a (36,28) (67,55) (55,67) c b  

10 b c d (45,29) (67,55) (58,72) c b  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pratio[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (67,55) a a  

14 c a d (58,72) (67,55) (45,29) b c Pratio[a,d] is updated from (58,72) to 
(67,55); pred[a,d] is updated from b to c 

15 c b a (55,67) (79,59) (36,28) b c Pratio[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (58,72) (79,59) (45,29) b c Pratio[b,d] is updated from (58,72) to 
(79,59); pred[b,d] is updated from b to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (67,55) d a  

19 d a b (67,55) (67,55) (72,58) a d  

20 d a c (67,55) (67,55) (72,58) b b  

21 d b a (36,28) (79,59) (50,40) c d  

22 d b c (79,59) (79,59) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d  

24 d c b (67,55) (45,29) (72,58) a d Pratio[c,b] is updated from (67,55) to 
(72,58); pred[c,b] is updated from a to d 
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c) winning votes 
 

We get: (N[b,c],N[c,b]) win (N[d,b],N[b,d]) win (N[a,b],N[b,a]) win 
(N[d,a],N[a,d]) win (N[c,d],N[d,c]) win (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a support of N[b,c] = 79 
db with a support of N[d,b] = 72 
ab with a support of N[a,b] = 67 
da with a support of N[d,a] = 50 
cd with a support of N[c,d] = 45 
ca with a support of N[c,a] = 36 
 

The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get win = {ab, ac, bc, da, db, dc} and win = {d}. 
 

Suppose, the strongest paths are calculated with the Floyd algorithm, as 
defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• Pwin[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pwin[j,k] Pwin[j,i] Pwin[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a Pwin[b,d] is updated from (58,72) to 
(55,67); pred[b,d] is updated from b to a 

3 a c b (59,79) (36,28) (67,55) c a Pwin[c,b] is updated from (59,79) to 
(36,28); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pwin[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pwin[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (55,67) a a  

9 b c a (36,28) (36,28) (55,67) c b  

10 b c d (45,29) (36,28) (55,67) c a  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pwin[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (36,28) a a  

14 c a d (40,50) (67,55) (45,29) a c Pwin[a,d] is updated from (40,50) to 
(45,29); pred[a,d] is updated from a to c 

15 c b a (55,67) (79,59) (36,28) b c Pwin[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (55,67) (79,59) (45,29) a c Pwin[b,d] is updated from (55,67) to 
(45,29); pred[b,d] is updated from a to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (36,28) d a  

19 d a b (67,55) (45,29) (72,58) a d  

20 d a c (67,55) (45,29) (72,58) b b  

21 d b a (36,28) (45,29) (50,40) c d Pwin[b,a] is updated from (36,28) to 
(45,29); pred[b,a] is updated from c to d 

22 d b c (79,59) (45,29) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d Pwin[c,a] is updated from (36,28) to 
(45,29); pred[c,a] is updated from c to d 

24 d c b (36,28) (45,29) (72,58) a d Pwin[c,b] is updated from (36,28) to 
(45,29); pred[c,b] is updated from a to d 
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d) losing votes 
 

We get: (N[c,a],N[a,c]) los (N[c,d],N[d,c]) los (N[d,a],N[a,d]) los 
(N[a,b],N[b,a]) los (N[d,b],N[b,d]) los (N[b,c],N[c,b]). 
 
The pairwise victories are: 
 

ca with an opposition of N[a,c] = 28 
cd with an opposition of N[d,c] = 29 
da with an opposition of N[a,d] = 40 
ab with an opposition of N[b,a] = 55 
db with an opposition of N[b,d] = 58 
bc with an opposition of N[c,b] = 59 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (36,28), a, 
(67,55), b --- c, (45,29), d 

from d ... d, (50,40), a d, (50,40), a 
(67,55), b 

d, (50,40), a 
(67,55), b, 
(79,59), c 

--- 

 
We get los = {ab, ca, cb, cd, da, db} and los = {c}. 
 

Suppose, the strongest paths are calculated with the Floyd algorithm, as 
defined in section 2.3. Then the following table documents the 24 steps of 
the Floyd algorithm. 

 
We start with 
 

• Plos[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Plos[j,k] Plos[j,i] Plos[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a  

3 a c b (59,79) (36,28) (67,55) c a Plos[c,b] is updated from (59,79) to 
(67,55); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a Plos[d,b] is updated from (72,58) to 
(67,55); pred[d,b] is updated from d to a 

6 a d c (29,45) (50,40) (28,36) d a  

7 b a c (28,36) (67,55) (79,59) a b Plos[a,c] is updated from (28,36) to 
(79,59); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (58,72) a b Plos[a,d] is updated from (40,50) to 
(58,72); pred[a,d] is updated from a to b 

9 b c a (36,28) (67,55) (55,67) c b  

10 b c d (45,29) (67,55) (58,72) c b  

11 b d a (50,40) (67,55) (55,67) d b  

12 b d c (29,45) (67,55) (79,59) d b Plos[d,c] is updated from (29,45) to 
(79,59); pred[d,c] is updated from d to b 

13 c a b (67,55) (79,59) (67,55) a a  

14 c a d (58,72) (79,59) (45,29) b c Plos[a,d] is updated from (58,72) to 
(79,59); pred[a,d] is updated from b to c 

15 c b a (55,67) (79,59) (36,28) b c Plos[b,a] is updated from (55,67) to 
(79,59); pred[b,a] is updated from b to c 

16 c b d (58,72) (79,59) (45,29) b c Plos[b,d] is updated from (58,72) to 
(79,59); pred[b,d] is updated from b to c 

17 c d a (50,40) (79,59) (36,28) d c  

18 c d b (67,55) (79,59) (67,55) a a  

19 d a b (67,55) (79,59) (67,55) a a  

20 d a c (79,59) (79,59) (79,59) b b  

21 d b a (79,59) (79,59) (50,40) c d  

22 d b c (79,59) (79,59) (79,59) b b  

23 d c a (36,28) (45,29) (50,40) c d  

24 d c b (67,55) (45,29) (67,55) a a  
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3.8. Example 8 
 

Example 8: 
 
9  voters a v d v b v e v c 
6  voters b v c v a v d v e 
5  voters b v c v d v e v a 
2  voters c v d v b v e v a 
6  voters d v e v c v b v a 
14  voters e v a v c v b v d 
2  voters e v c v a v b v d 
1  voter e v d v a v c v b 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 26 24 31 15 

N[b,*] 19 --- 20 27 22 

N[c,*] 21 25 --- 29 13 

N[d,*] 14 18 16 --- 28 

N[e,*] 30 23 32 17 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d 

c 

(30,15) 

(23,22) 

(27,18) 

(26,19) 

(29,16) (28,17) 

(32,13) 

(25,20) 

(31,14) 

(24,21) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (26,19), b 
a, (31,14), d, 

(28,17), e, 
(32,13), c 

a, (31,14), d a, (31,14), d, 
(28,17), e 

from b ... 
b, (27,18), d, 

(28,17), e, 
(30,15), a 

--- 
b, (27,18), d, 

(28,17), e, 
(32,13), c 

b, (27,18), d b, (27,18), d, 
(28,17), e 

from c ... 
c, (29,16), d, 

(28,17), e, 
(30,15), a 

c, (29,16), d, 
(28,17), e, 
(30,15), a, 
(26,19), b 

--- c, (29,16), d c, (29,16), d, 
(28,17), e 

from d ... d, (28,17), e, 
(30,15), a 

d, (28,17), e, 
(30,15), a, 
(26,19), b 

d, (28,17), e, 
(32,13), c --- d, (28,17), e 

from e ... e, (30,15), a e, (30,15), a, 
(26,19), b e, (32,13), c e, (30,15), a, 

(31,14), d --- 

 
We get  = {ad, ba, bc, bd, be, cd, ea, ec, ed} and  = {b}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 60 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (20,25) (19,26) (24,21) b a  

2 a b d (27,18) (19,26) (31,14) b a  

3 a b e (22,23) (19,26) (15,30) b a  

4 a c b (25,20) (21,24) (26,19) c a  

5 a c d (29,16) (21,24) (31,14) c a  

6 a c e (13,32) (21,24) (15,30) c a PD[c,e] is updated from (13,32) to (15,30); 
pred[c,e] is updated from c to a 

7 a d b (18,27) (14,31) (26,19) d a  

8 a d c (16,29) (14,31) (24,21) d a  

9 a d e (28,17) (14,31) (15,30) d a  

10 a e b (23,22) (30,15) (26,19) e a PD[e,b] is updated from (23,22) to (26,19); 
pred[e,b] is updated from e to a 

11 a e c (32,13) (30,15) (24,21) e a  

12 a e d (17,28) (30,15) (31,14) e a PD[e,d] is updated from (17,28) to (30,15); 
pred[e,d] is updated from e to a 

13 b a c (24,21) (26,19) (20,25) a b  

14 b a d (31,14) (26,19) (27,18) a b  

15 b a e (15,30) (26,19) (22,23) a b PD[a,e] is updated from (15,30) to (22,23); 
pred[a,e] is updated from a to b 

16 b c a (21,24) (25,20) (19,26) c b  

17 b c d (29,16) (25,20) (27,18) c b  

18 b c e (15,30) (25,20) (22,23) a b PD[c,e] is updated from (15,30) to (22,23); 
pred[c,e] is updated from a to b 

19 b d a (14,31) (18,27) (19,26) d b PD[d,a] is updated from (14,31) to (18,27); 
pred[d,a] is updated from d to b 

20 b d c (16,29) (18,27) (20,25) d b PD[d,c] is updated from (16,29) to (18,27); 
pred[d,c] is updated from d to b 

21 b d e (28,17) (18,27) (22,23) d b  

22 b e a (30,15) (26,19) (19,26) e b  

23 b e c (32,13) (26,19) (20,25) e b  

24 b e d (30,15) (26,19) (27,18) a b  

25 c a b (26,19) (24,21) (25,20) a c  

26 c a d (31,14) (24,21) (29,16) a c  

27 c a e (22,23) (24,21) (22,23) b b  

28 c b a (19,26) (20,25) (21,24) b c PD[b,a] is updated from (19,26) to (20,25); 
pred[b,a] is updated from b to c 

29 c b d (27,18) (20,25) (29,16) b c  

30 c b e (22,23) (20,25) (22,23) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (18,27) (18,27) (21,24) b c  

32 c d b (18,27) (18,27) (25,20) d c  

33 c d e (28,17) (18,27) (22,23) d b  

34 c e a (30,15) (32,13) (21,24) e c  

35 c e b (26,19) (32,13) (25,20) a c  

36 c e d (30,15) (32,13) (29,16) a c  

37 d a b (26,19) (31,14) (18,27) a d  

38 d a c (24,21) (31,14) (18,27) a b  

39 d a e (22,23) (31,14) (28,17) b d PD[a,e] is updated from (22,23) to (28,17); 
pred[a,e] is updated from b to d 

40 d b a (20,25) (27,18) (18,27) c b  

41 d b c (20,25) (27,18) (18,27) b b  

42 d b e (22,23) (27,18) (28,17) b d PD[b,e] is updated from (22,23) to (27,18); 
pred[b,e] is updated from b to d 

43 d c a (21,24) (29,16) (18,27) c b  

44 d c b (25,20) (29,16) (18,27) c d  

45 d c e (22,23) (29,16) (28,17) b d PD[c,e] is updated from (22,23) to (28,17); 
pred[c,e] is updated from b to d 

46 d e a (30,15) (30,15) (18,27) e b  

47 d e b (26,19) (30,15) (18,27) a d  

48 d e c (32,13) (30,15) (18,27) e b  

49 e a b (26,19) (28,17) (26,19) a a  

50 e a c (24,21) (28,17) (32,13) a e PD[a,c] is updated from (24,21) to (28,17); 
pred[a,c] is updated from a to e 

51 e a d (31,14) (28,17) (30,15) a a  

52 e b a (20,25) (27,18) (30,15) c e PD[b,a] is updated from (20,25) to (27,18); 
pred[b,a] is updated from c to e 

53 e b c (20,25) (27,18) (32,13) b e PD[b,c] is updated from (20,25) to (27,18); 
pred[b,c] is updated from b to e 

54 e b d (27,18) (27,18) (30,15) b a  

55 e c a (21,24) (28,17) (30,15) c e PD[c,a] is updated from (21,24) to (28,17); 
pred[c,a] is updated from c to e 

56 e c b (25,20) (28,17) (26,19) c a PD[c,b] is updated from (25,20) to (26,19); 
pred[c,b] is updated from c to a 

57 e c d (29,16) (28,17) (30,15) c a  

58 e d a (18,27) (28,17) (30,15) b e PD[d,a] is updated from (18,27) to (28,17); 
pred[d,a] is updated from b to e 

59 e d b (18,27) (28,17) (26,19) d a PD[d,b] is updated from (18,27) to (26,19); 
pred[d,b] is updated from d to a 

60 e d c (18,27) (28,17) (32,13) b e PD[d,c] is updated from (18,27) to (28,17); 
pred[d,c] is updated from b to e 
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3.9. Example 9 
 

Example 9: 
 

9  voters a v d v b v e v c 
1  voter b v a v c v e v d 
6  voters c v b v a v d v e 
2  voters c v d v b v e v a 
5  voters c v d v e v a v b 
6  voters d v e v c v a v b 
14  voters e v b v a v c v d 
2  voters e v b v c v a v d 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 20 24 32 16 

N[b,*] 25 --- 26 23 18 

N[c,*] 21 19 --- 30 14 

N[d,*] 13 22 15 --- 28 

N[e,*] 29 27 31 17 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d  

c 

(29,16) 

(27,18) 

(23,22) 

(25,20) 

(30,15) (28,17) 

(31,14) 

(26,19) 

(32,13) 

(24,21) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- 
a, (32,13), d, 

(28,17), e, 
(27,18), b 

a, (32,13), d, 
(28,17), e, 
(31,14), c 

a, (32,13), d a, (32,13), d, 
(28,17), e 

from b ... 

b, (26,19), c, 
(30,15), d, 
(28,17), e, 
(29,16), a 

--- b, (26,19), c b, (26,19), c, 
(30,15), d 

b, (26,19), c, 
(30,15), d, 
(28,17), e 

from c ... 
c, (30,15), d, 

(28,17), e, 
(29,16), a 

c, (30,15), d, 
(28,17), e, 
(27,18), b 

--- c, (30,15), d c, (30,15), d, 
(28,17), e 

from d ... d, (28,17), e, 
(29,16), a 

d, (28,17), e, 
(27,18), b 

d, (28,17), e, 
(31,14), c --- d, (28,17), e 

from e ... e, (29,16), a e, (27,18), b e, (31,14), c e, (31,14), c, 
(30,15), d --- 

 
We get  = {ab, ad, cb, cd, db, ea, eb, ec, ed} and  = {e}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 60 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (26,19) (25,20) (24,21) b a  

2 a b d (23,22) (25,20) (32,13) b a PD[b,d] is updated from (23,22) to (25,20); 
pred[b,d] is updated from b to a 

3 a b e (18,27) (25,20) (16,29) b a  

4 a c b (19,26) (21,24) (20,25) c a PD[c,b] is updated from (19,26) to (20,25); 
pred[c,b] is updated from c to a 

5 a c d (30,15) (21,24) (32,13) c a  

6 a c e (14,31) (21,24) (16,29) c a PD[c,e] is updated from (14,31) to (16,29); 
pred[c,e] is updated from c to a 

7 a d b (22,23) (13,32) (20,25) d a  

8 a d c (15,30) (13,32) (24,21) d a  

9 a d e (28,17) (13,32) (16,29) d a  

10 a e b (27,18) (29,16) (20,25) e a  

11 a e c (31,14) (29,16) (24,21) e a  

12 a e d (17,28) (29,16) (32,13) e a PD[e,d] is updated from (17,28) to (29,16); 
pred[e,d] is updated from e to a 

13 b a c (24,21) (20,25) (26,19) a b  

14 b a d (32,13) (20,25) (25,20) a a  

15 b a e (16,29) (20,25) (18,27) a b PD[a,e] is updated from (16,29) to (18,27); 
pred[a,e] is updated from a to b 

16 b c a (21,24) (20,25) (25,20) c b  

17 b c d (30,15) (20,25) (25,20) c a  

18 b c e (16,29) (20,25) (18,27) a b PD[c,e] is updated from (16,29) to (18,27); 
pred[c,e] is updated from a to b 

19 b d a (13,32) (22,23) (25,20) d b PD[d,a] is updated from (13,32) to (22,23); 
pred[d,a] is updated from d to b 

20 b d c (15,30) (22,23) (26,19) d b PD[d,c] is updated from (15,30) to (22,23); 
pred[d,c] is updated from d to b 

21 b d e (28,17) (22,23) (18,27) d b  

22 b e a (29,16) (27,18) (25,20) e b  

23 b e c (31,14) (27,18) (26,19) e b  

24 b e d (29,16) (27,18) (25,20) a a  

25 c a b (20,25) (24,21) (20,25) a a  

26 c a d (32,13) (24,21) (30,15) a c  

27 c a e (18,27) (24,21) (18,27) b b  

28 c b a (25,20) (26,19) (21,24) b c  

29 c b d (25,20) (26,19) (30,15) a c PD[b,d] is updated from (25,20) to (26,19); 
pred[b,d] is updated from a to c 

30 c b e (18,27) (26,19) (18,27) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (22,23) (22,23) (21,24) b c  

32 c d b (22,23) (22,23) (20,25) d a  

33 c d e (28,17) (22,23) (18,27) d b  

34 c e a (29,16) (31,14) (21,24) e c  

35 c e b (27,18) (31,14) (20,25) e a  

36 c e d (29,16) (31,14) (30,15) a c PD[e,d] is updated from (29,16) to (30,15); 
pred[e,d] is updated from a to c 

37 d a b (20,25) (32,13) (22,23) a d PD[a,b] is updated from (20,25) to (22,23); 
pred[a,b] is updated from a to d 

38 d a c (24,21) (32,13) (22,23) a b  

39 d a e (18,27) (32,13) (28,17) b d PD[a,e] is updated from (18,27) to (28,17); 
pred[a,e] is updated from b to d 

40 d b a (25,20) (26,19) (22,23) b b  

41 d b c (26,19) (26,19) (22,23) b b  

42 d b e (18,27) (26,19) (28,17) b d PD[b,e] is updated from (18,27) to (26,19); 
pred[b,e] is updated from b to d 

43 d c a (21,24) (30,15) (22,23) c b PD[c,a] is updated from (21,24) to (22,23); 
pred[c,a] is updated from c to b 

44 d c b (20,25) (30,15) (22,23) a d PD[c,b] is updated from (20,25) to (22,23); 
pred[c,b] is updated from a to d 

45 d c e (18,27) (30,15) (28,17) b d PD[c,e] is updated from (18,27) to (28,17); 
pred[c,e] is updated from b to d 

46 d e a (29,16) (30,15) (22,23) e b  

47 d e b (27,18) (30,15) (22,23) e d  

48 d e c (31,14) (30,15) (22,23) e b  

49 e a b (22,23) (28,17) (27,18) d e PD[a,b] is updated from (22,23) to (27,18); 
pred[a,b] is updated from d to e 

50 e a c (24,21) (28,17) (31,14) a e PD[a,c] is updated from (24,21) to (28,17); 
pred[a,c] is updated from a to e 

51 e a d (32,13) (28,17) (30,15) a c  

52 e b a (25,20) (26,19) (29,16) b e PD[b,a] is updated from (25,20) to (26,19); 
pred[b,a] is updated from b to e 

53 e b c (26,19) (26,19) (31,14) b e  

54 e b d (26,19) (26,19) (30,15) c c  

55 e c a (22,23) (28,17) (29,16) b e PD[c,a] is updated from (22,23) to (28,17); 
pred[c,a] is updated from b to e 

56 e c b (22,23) (28,17) (27,18) d e PD[c,b] is updated from (22,23) to (27,18); 
pred[c,b] is updated from d to e 

57 e c d (30,15) (28,17) (30,15) c c  

58 e d a (22,23) (28,17) (29,16) b e PD[d,a] is updated from (22,23) to (28,17); 
pred[d,a] is updated from b to e 

59 e d b (22,23) (28,17) (27,18) d e PD[d,b] is updated from (22,23) to (27,18); 
pred[d,b] is updated from d to e 

60 e d c (22,23) (28,17) (31,14) b e PD[d,c] is updated from (22,23) to (28,17); 
pred[d,c] is updated from b to e 
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3.10. Example 10 
 

Example 10: 
 

5  voters a v c v b v e v d 
5  voters a v d v e v c v b 
8  voters b v e v d v a v c 
3  voters c v a v b v e v d 
7  voters c v a v e v b v d 
2  voters c v b v a v d v e 
7  voters d v c v e v b v a 
8  voters e v b v a v d v c 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 20 26 30 22 

N[b,*] 25 --- 16 33 18 

N[c,*] 19 29 --- 17 24 

N[d,*] 15 12 28 --- 14 

N[e,*] 23 27 21 31 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d  

c 

(23,22) 

(27,18) 

(33,12) 

(25,20) 

(28,17) (31,14) 

(24,21) 

(29,16) 

(30,15) 

(26,19) 

  b   a 



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 66 

The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- 
a, (30,15), d, 

(28,17), c, 
(29,16), b 

a, (30,15), d, 
(28,17), c a, (30,15), d 

a, (30,15), d, 
(28,17), c, 
(24,21), e 

from b ... b, (25,20), a --- b, (33,12), d, 
(28,17), c b, (33,12), d 

b, (33,12), d, 
(28,17), c, 
(24,21), e 

from c ... c, (29,16), b, 
(25,20), a c, (29,16), b --- c, (29,16), b, 

(33,12), d c, (24,21), e 

from d ... 
d, (28,17), c, 
(29,16), b, 
(25,20), a 

d, (28,17), c, 
(29,16), b d, (28,17), c --- d, (28,17), c, 

(24,21), e 

from e ... 

e, (31,14), d, 
(28,17), c, 
(29,16), b, 
(25,20), a 

e, (31,14), d, 
(28,17), c, 
(29,16), b 

e, (31,14), d, 
(28,17), c e, (31,14), d --- 

 
We get  = {ab, ac, ad, bd, cb, cd, ea, eb, ec, ed} and  = {e}. 
 
Suppose, the strongest paths are calculated with the Floyd algorithm, as 

defined in section 2.3. Then the following table documents the 60 steps of 
the Floyd algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (16,29) (25,20) (26,19) b a PD[b,c] is updated from (16,29) to (25,20); 
pred[b,c] is updated from b to a 

2 a b d (33,12) (25,20) (30,15) b a  

3 a b e (18,27) (25,20) (22,23) b a PD[b,e] is updated from (18,27) to (22,23); 
pred[b,e] is updated from b to a 

4 a c b (29,16) (19,26) (20,25) c a  

5 a c d (17,28) (19,26) (30,15) c a PD[c,d] is updated from (17,28) to (19,26); 
pred[c,d] is updated from c to a 

6 a c e (24,21) (19,26) (22,23) c a  

7 a d b (12,33) (15,30) (20,25) d a PD[d,b] is updated from (12,33) to (15,30); 
pred[d,b] is updated from d to a 

8 a d c (28,17) (15,30) (26,19) d a  

9 a d e (14,31) (15,30) (22,23) d a PD[d,e] is updated from (14,31) to (15,30); 
pred[d,e] is updated from d to a 

10 a e b (27,18) (23,22) (20,25) e a  

11 a e c (21,24) (23,22) (26,19) e a PD[e,c] is updated from (21,24) to (23,22); 
pred[e,c] is updated from e to a 

12 a e d (31,14) (23,22) (30,15) e a  

13 b a c (26,19) (20,25) (25,20) a a  

14 b a d (30,15) (20,25) (33,12) a b  

15 b a e (22,23) (20,25) (22,23) a a  

16 b c a (19,26) (29,16) (25,20) c b PD[c,a] is updated from (19,26) to (25,20); 
pred[c,a] is updated from c to b 

17 b c d (19,26) (29,16) (33,12) a b PD[c,d] is updated from (19,26) to (29,16); 
pred[c,d] is updated from a to b 

18 b c e (24,21) (29,16) (22,23) c a  

19 b d a (15,30) (15,30) (25,20) d b  

20 b d c (28,17) (15,30) (25,20) d a  

21 b d e (15,30) (15,30) (22,23) a a  

22 b e a (23,22) (27,18) (25,20) e b PD[e,a] is updated from (23,22) to (25,20); 
pred[e,a] is updated from e to b 

23 b e c (23,22) (27,18) (25,20) a a PD[e,c] is updated from (23,22) to (25,20) 

24 b e d (31,14) (27,18) (33,12) e b  

25 c a b (20,25) (26,19) (29,16) a c PD[a,b] is updated from (20,25) to (26,19); 
pred[a,b] is updated from a to c 

26 c a d (30,15) (26,19) (29,16) a b  

27 c a e (22,23) (26,19) (24,21) a c PD[a,e] is updated from (22,23) to (24,21); 
pred[a,e] is updated from a to c 

28 c b a (25,20) (25,20) (25,20) b b  

29 c b d (33,12) (25,20) (29,16) b b  

30 c b e (22,23) (25,20) (24,21) a c PD[b,e] is updated from (22,23) to (24,21); 
pred[b,e] is updated from a to c 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (15,30) (28,17) (25,20) d b PD[d,a] is updated from (15,30) to (25,20); 
pred[d,a] is updated from d to b 

32 c d b (15,30) (28,17) (29,16) a c PD[d,b] is updated from (15,30) to (28,17); 
pred[d,b] is updated from a to c 

33 c d e (15,30) (28,17) (24,21) a c PD[d,e] is updated from (15,30) to (24,21); 
pred[d,e] is updated from a to c 

34 c e a (25,20) (25,20) (25,20) b b  

35 c e b (27,18) (25,20) (29,16) e c  

36 c e d (31,14) (25,20) (29,16) e b  

37 d a b (26,19) (30,15) (28,17) c c PD[a,b] is updated from (26,19) to (28,17) 

38 d a c (26,19) (30,15) (28,17) a d PD[a,c] is updated from (26,19) to (28,17); 
pred[a,c] is updated from a to d 

39 d a e (24,21) (30,15) (24,21) c c  

40 d b a (25,20) (33,12) (25,20) b b  

41 d b c (25,20) (33,12) (28,17) a d PD[b,c] is updated from (25,20) to (28,17); 
pred[b,c] is updated from a to d 

42 d b e (24,21) (33,12) (24,21) c c  

43 d c a (25,20) (29,16) (25,20) b b  

44 d c b (29,16) (29,16) (28,17) c c  

45 d c e (24,21) (29,16) (24,21) c c  

46 d e a (25,20) (31,14) (25,20) b b  

47 d e b (27,18) (31,14) (28,17) e c PD[e,b] is updated from (27,18) to (28,17); 
pred[e,b] is updated from e to c 

48 d e c (25,20) (31,14) (28,17) a d PD[e,c] is updated from (25,20) to (28,17); 
pred[e,c] is updated from a to d 

49 e a b (28,17) (24,21) (28,17) c c  

50 e a c (28,17) (24,21) (28,17) d d  

51 e a d (30,15) (24,21) (31,14) a e  

52 e b a (25,20) (24,21) (25,20) b b  

53 e b c (28,17) (24,21) (28,17) d d  

54 e b d (33,12) (24,21) (31,14) b e  

55 e c a (25,20) (24,21) (25,20) b b  

56 e c b (29,16) (24,21) (28,17) c c  

57 e c d (29,16) (24,21) (31,14) b e  

58 e d a (25,20) (24,21) (25,20) b b  

59 e d b (28,17) (24,21) (28,17) c c  

60 e d c (28,17) (24,21) (28,17) d d  
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4. Analysis of the Schulze Method 
 

4.1. Transitivity 
 

In this section, we will prove that the binary relation , as defined in 
(2.2.1), is transitive. This means: If ab ∈  and bc ∈ , then ac ∈ . This 
guarantees that the set  of potential winners, as defined in (2.2.2), is non-
empty. When we interpret the Schulze method as a method to find a set  of 
potential winners, rather than a method to generate a binary relation , then 
the proof of the transitivity of  is an essential part of the proof that the 
Schulze method is well defined. 
 
Definition: 
 

An election method satisfies transitivity if the following holds for all 
a,b,c ∈ A: 

 
Suppose: 

 
(4.1.1) ab ∈ . 
 
(4.1.2) bc ∈ . 

 
Then: 

 
(4.1.3) ac ∈ . 
 

Claim: 
 

The binary relation , as defined in (2.2.1), is transitive. 
 
Proof: 

 
With (4.1.1), we get 

 
(4.1.4) PD[a,b] D PD[b,a]. 
 
With (4.1.2), we get 
 
(4.1.5) PD[b,c] D PD[c,b]. 
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With (2.2.5), we get 
 

(4.1.6) minD { PD[a,b], PD[b,c] } D PD[a,c]. 

(4.1.7) minD { PD[b,c], PD[c,a] } D PD[b,a]. 

(4.1.8) minD { PD[c,a], PD[a,b] } D PD[c,b]. 

Case 1: Suppose 

(4.1.9a) PD[a,b] D PD[b,c]. 

Combining (4.1.5) and (4.1.9a) gives 

(4.1.10a) PD[a,b] D PD[c,b]. 

Combining (4.1.8) and (4.1.10a) gives 

(4.1.11a) PD[c,a] D PD[c,b]. 

Combining (4.1.6) and (4.1.9a) gives 

(4.1.12a) PD[b,c] D PD[a,c]. 

Combining (4.1.11a), (4.1.5), and (4.1.12a) gives 

(4.1.13a) PD[c,a] D PD[c,b] D PD[b,c] D PD[a,c]. 

With (4.1.13a), we get (4.1.3). 

Case 2: Suppose 

(4.1.9b) PD[a,b] D PD[b,c]. 

Combining (4.1.4) and (4.1.9b) gives 

(4.1.10b) PD[b,a] D PD[b,c]. 

Combining (4.1.7) and (4.1.10b) gives 

(4.1.11b) PD[c,a] D PD[b,a]. 

Combining (4.1.6) and (4.1.9b) gives 

(4.1.12b) PD[a,b] D PD[a,c]. 

Combining (4.1.11b), (4.1.4), and (4.1.12b) gives 

(4.1.13b) PD[c,a] D PD[b,a] D PD[a,b] D PD[a,c]. 

With (4.1.13b), we get (4.1.3).      □ 

The proof, that the Schulze method is transitive, has first been published 
by Schulze (1998). 
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The following corollary says that the set  of potential winners, as 
defined in (2.2.2), is non-empty. 

Corollary (4.1.14): 

For the Schulze method, as defined in section 2.2, we get 

(4.1.14) ∀ b ∉  ∃ a ∈ : ab ∈ . 

Proof of corollary (4.1.14): 

As b ∉ , there must be a c(1) ∈ A with c(1),b ∈ . 

If c(1) ∈ , then the corollary is proven. If c(1) ∉ , then there must be a 
c(2) ∈ A with c(2),c(1) ∈ . With the asymmetry and the transitivity of , 
we get c(2),b ∈  and c(2) ∉ {b, c(1)}. 

We now proceed as follows: If c(i) ∈ , then the corollary is proven. If 
c(i) ∉ , then there must be a c(i+1) ∈ A with c(i+1),c(i) ∈ . With the 
asymmetry and the transitivity of , we get c(i+1),b ∈  and c(i+1) ∉ {b, 
c(1), ..., c(i)}. 

We proceed until c(i) ∈  for some i ∈ . Such an i ∈  exists because A 
is finite.            □ 

 
The following corollary says that alternative a ∈ A is the unique winner if 

and only if alternative a disqualifies every other alternative b ∈ A \ {a}. 
 

Corollary (4.1.15): 

For the Schulze method, as defined in section 2.2, we get 

(4.1.15)  = {a} ⇔ ab ∈  ∀ b ∈ A \ {a}. 

Proof of corollary (4.1.15): 

⇐ If ab ∈  ∀ b ∈ A \ {a}, then a ∈ A disqualifies every b ∈ A \ {a} 
according to (2.2.2). Therefore, we get  = {a}. 

⇒ With (4.1.14) and  = {a}, we get 

(4.1.16) ∀ b ∉ : ab ∈ . 

With  = {a}, we get 

(4.1.17) b ∉  ⇔ b ∈ A \ {a}. 

With (4.1.16) and (4.1.17), we get 

(4.1.18) ∀ b ∈ A \ {a}: ab ∈ .       □ 

In example 2 (section 3.2), we have ba ∉  and ac ∉  and bc ∈ . This 
shows that the Schulze relation, as defined in (2.2.1), is not necessarily 
negatively transitive. 
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4.2. Resolvability 

Resolvability basically says that usually there is a unique winner  = {a}. 
There are two different versions of the resolvability criterion. We will prove 
that the Schulze method, as defined in section 2.2, satisfies both. 

4.2.1. Formulation #1 
 
Definition: 

An election method satisfies the first version of the resolvability criterion 
if ( for every given number of alternatives ) the proportion of profiles 
without a unique winner tends to zero as the number of voters in the profile 
tends to infinity. 

Claim: 

If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 
satisfies the first version of the resolvability criterion. 

Proof (overview): 

Suppose (x1,x2),(y1,y2) ∈ 0 × 0. Then, according to (2.1.1), there is a    
v1 ∈ 0 such that for all w1 ∈ 0: 

1. w1 < v1 ⇒ (x1,x2) D (w1,y2). 

2. w1 > v1 ⇒ (x1,x2) D (w1,y2). 

When the number of voters tends to infinity ( i.e. when x1, x2, y1, and y2 
become large ), then the proportion of profiles, where the condition “y1 = v1” 
happens to be satisfied, tends to zero. Therefore, when the number of voters 
tends to infinity, then the proportion of profiles, where two links ef and gh 
happen to have equivalent strengths (N[e,f],N[f,e]) ≈D (N[g,h],N[h,g]), tends 
to zero. 

Therefore, we will prove that, unless there are links ef and gh of 
equivalent strengths, there is always a unique winner. We will prove this by 
showing that, when we simultaneously presume (a) that there is more than 
one potential winner and (b) that there are no links ef and gh of equivalent 
strengths, then we necessarily get to a contradiction. 

Proof (details): 

Suppose that there is more than one potential winner. Suppose alternative 
a ∈ A and alternative b ∈ A are potential winners. Then 

(4.2.1.1) ∀ i ∈ A \ {a}: PD[a,i] D PD[i,a]. 

(4.2.1.2) ∀ j ∈ A \ {b}: PD[b,j] D PD[j,b]. 

(4.2.1.3) PD[a,b] ≈D PD[b,a]. 
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Suppose there are no links ef and gh of equivalent strengths (N[e,f],N[f,e]) 
≈D (N[g,h],N[h,g]). Then PD[a,b] ≈D PD[b,a] means that the weakest link in 
the strongest path from alternative a to alternative b and the weakest link in 
the strongest path from alternative b to alternative a must be the same link, 
say cd. Therefore, the strongest paths have the following structure: 

 

 

 

As cd is the weakest link in the strongest path from alternative a to 
alternative b, we get 

(4.2.1.4) PD[a,d] ≈D PD[a,b]. 

(4.2.1.5) PD[d,b] D PD[a,b]. 

As cd is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(4.2.1.6) PD[b,d] ≈D PD[b,a]. 

(4.2.1.7) PD[d,a] D PD[b,a]. 
 
With (4.2.1.7), (4.2.1.3), and (4.2.1.4), we get 

(4.2.1.8) PD[d,a] D PD[b,a] ≈D PD[a,b] ≈D PD[a,d]. 

But (4.2.1.8) contradicts (4.2.1.1). 

Similarly, with (4.2.1.5), (4.2.1.3), and (4.2.1.6), we get 

(4.2.1.9) PD[d,b] D PD[a,b] ≈D PD[b,a] ≈D PD[b,d]. 

But (4.2.1.9) contradicts (4.2.1.2).       □ 

  

a b

c

d

P b cD[ , ]

( [ , ], [ , ])N c d N d c

P a cD[ , ]

P d aD[ , ] P d bD[ , ]
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4.2.2. Formulation #2 
 
The second version of the resolvability criterion says that, when there is 

more than one potential winner, then, for every alternative a ∈ , it is 
sufficient to add a single ballot w so that alternative a becomes the unique 
winner. 

 
Definition: 

 
An election method satisfies the second version of the resolvability 
criterion if the following holds: 
 

∀ a ∈ old: It is possible to construct a strict weak order w with 
the following two properties: 
 
(4.2.2.1) ∀ f ∈ A \ {a}: a w f. 
 
(4.2.2.2) new = {a} for Vnew : = Vold + {w}. 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the resolvability criterion. 
 

Proof: 
 

Suppose a ∈ old. Then we get 
 

(4.2.2.3) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 
 

Suppose predold[x,y] is the predecessor of alternative y in the strongest path 
from alternative x ∈ A to alternative y ∈ A \ {x}, as calculated in section 2.3. 

 
Suppose the strict weak order w is chosen as follows: 
 
(4.2.2.4) ∀ f ∈ A \ {a}: predold[a,f] w f. 
 
(4.2.2.5) ∀ e,f ∈ A \ {a}: ( P old

D [e,a] D P old
D [f,a] ⇒ e w f ). 

 
With (4.2.2.4), we get (4.2.2.1). 
 
We will prove the following three claims: 

 
Claim #1: It is not possible that (4.2.2.4) requires e w f 
and that simultaneously (4.2.2.5) requires f w e. 
 
Claim #2: ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 

 
Claim #3: ∀ g ∈ A \ {a}: P new

D [g,a] D P old
D [a,g]. 
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With claim #2 and claim #3, we get 
 

P new
D [a,g] D P new

D [g,a] for all g ∈ A \ {a} 
 
so that ag ∈ new for all g ∈ A \ {a} 
 
so that new = {a}. 
 

Proof of claim #1: 
 

Suppose e,f ∈ A \ {a}. With (2.2.3), we get 
 
(4.2.2.6) P old

D [e,f] D (Nold[e,f],Nold[f,e]). 
 
With (2.2.5), we get 
 
(4.2.2.7) minD { P old

D [e,f], P old
D [f,a] } D P old

D [e,a]. 
 
With (4.2.2.3), we get 
 
(4.2.2.8) P old

D [a,f] D P old
D [f,a]. 

 
Suppose (4.2.2.4) requires e w f. Then e = predold[a,f]. Therefore, the link 

ef was in the strongest path from alternative a to alternative f. Thus, we get 
 
(4.2.2.9) P old

D [a,f] D (Nold[e,f],Nold[f,e]). 
 

Suppose (4.2.2.5) requires f w e. Then 
 
(4.2.2.10) P old

D [f,a] D P old
D [e,a]. 

 
With (4.2.2.6), (4.2.2.9), (4.2.2.8), and (4.2.2.10), we get 
 
(4.2.2.11) P old

D [e,f] D (Nold[e,f],Nold[f,e]) D P old
D [a,f] D P old

D [f,a] D P old
D [e,a]. 

 
But (4.2.2.10) and (4.2.2.11) together contradict (4.2.2.7). 
 

Proof of claim #2: 
 

With (2.1.1) and (4.2.2.4), we get: The strength of each link of the 
strongest paths from alternative a to each other alternative g ∈ A \ {a} is 
increased. Therefore 

 
(4.2.2.12) ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 
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Proof of claim #3: 
 

Suppose g ∈ A \ {a}. Suppose 
 
(4.2.2.13) T(g) : = ( {a} ∪ { h ∈ A \ {a} | P old

D [h,a] D P old
D [a,g] } ). 

 
With (4.2.2.3) and (4.2.2.13), we get 
 
(4.2.2.14) g ∉ T(g) and a ∈ T(g) 
 
and, therefore, ∅ ≠ T(g) ⊊ A. Furthermore, we get 
 
(4.2.2.15) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nold[i,j],Nold[j,i]) D P old

D [a,g]. 
 
Otherwise, there was a path from alternative i to alternative a via 

alternative j with a strength of more than P old
D [a,g]. But ( as i ∉ T(g) ) this 

would contradict the definition of T(g). 
 

With (4.2.2.5), (4.2.2.1), and (4.2.2.13), we get 
 
(4.2.2.16) ∀ i ∉ T(g) ∀ j ∈ T(g): j w i. 
 
With (2.1.1) and (4.2.2.16), we get 
 
(4.2.2.17) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D (Nold[i,j],Nold[j,i]). 
 
With (4.2.2.15) and (4.2.2.17), we get 
 
(4.2.2.18) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D P old

D [a,g]. 
 
With (4.2.2.14) and (4.2.2.18), we get 
 
(4.2.2.19) P new

D [g,a] D P old
D [a,g].        □ 

 
The proof in section 4.2.2 has first been published by Schulze (2011). It 

immediately attracted attention, because it doesn’t only prove that there is      
a tie-breaking ballot w, it also shows how this tie-breaking ballot w can be 
calculated in a polynomial runtime. Parkes and Xia (2012) pointed to the fact 
that this proof can also be interpreted as saying that it is possible to calculate 
a voting strategy in a polynomial runtime. This observation by Parkes and Xia 
has been extended by Gaspers (2012), Menton (2013a, 2013b), J. Müller 
(2013), Reisch (2014), Schend (2015), and Hemaspaandra (2016). Surveys, 
that are including the Schulze method, on the complexity of calculating a 
voting strategy have been written by Durand (2015), Baumeister and Rothe 
(2016), Conitzer and Walsh (2016), and Faliszewski and Rothe (2016). 
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4.3. Pareto 
 

The Pareto criterion says that the election method must respect 
unanimous opinions. There are two different versions of the Pareto criterion. 
The first version addresses situations with “ a v b for all v ∈ V ”, while the 
second version addresses situations with “ a v b for all v ∈ V ” ( for some 
pair of alternatives a,b ∈ A ). The first version says that, when every voter 
strictly prefers alternative a to alternative b ( i.e. a v b for all v ∈ V ), then 
alternative a must perform better than alternative b. The second version says 
that, when no voter strictly prefers alternative b to alternative a ( i.e. a v b 
for all v ∈ V ), then alternative b must not perform better than alternative a. 
We will prove that the Schulze method, as defined in section 2.2, satisfies 
both versions of the Pareto criterion. 

 
4.3.1. Formulation #1 
 
Definition: 
 

An election method satisfies the first version of the Pareto criterion if the 
following holds: 

 
Suppose: 

 
(4.3.1.1) ∀ v ∈ V: a v b. 

 
Then: 

 
(4.3.1.2) ab ∈ . 
 
(4.3.1.3) b ∉ . 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the first version of the Pareto criterion. 
 

Proof: 
 

With (2.1.1) and (4.3.1.1), we get 
 
(4.3.1.4) ∀ e,f ∈ A: (N[a,b],N[b,a]) D (N[e,f],N[f,e]). 
 
(4.3.1.5) [ (N[a,b],N[b,a]) ≈D (N[e,f],N[f,e]) ] ⇔ [ ∀ v ∈ V: e v f ]. 
 
With (2.2.4), we get: ab ∈ , unless the link ab is in a directed cycle that 

consists of links of which each is at least as strong as the link ab. 
 
However, as we presumed that the individual ballots v are strict weak 

orders, it is not possible that there is a directed cycle of unanimous opinions. 
Therefore, it is not possible that the link ab is in a directed cycle that consists 
of links of which each is at least as strong as the link ab. Therefore, with 
(2.2.4), (4.3.1.4), and (4.3.1.5), we get (4.3.1.2). With (4.3.1.2), we get 
(4.3.1.3).           □ 
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4.3.2. Formulation #2 
 
Definition: 
 

An election method satisfies the second version of the Pareto criterion if 
the following holds: 

 
Suppose: 

 
(4.3.2.1) ∀ v ∈ V: a v b. 

 
Then: 

 
(4.3.2.2) ba ∉ . 
 
(4.3.2.3) ∀ f ∈ A \ {a,b}: bf ∈  ⇒ af ∈ . 
 
(4.3.2.4) ∀ f ∈ A \ {a,b}: fa ∈  ⇒ fb ∈ . 
 
(4.3.2.5) b ∈  ⇒ a ∈ . 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the Pareto criterion. 
 

Proof: 
 

With (4.3.2.1), we get 
 
(4.3.2.6) ∀ e ∈ A \ {a,b}: N[a,e] ≥ N[b,e]. 
 
With (4.3.2.1), we get 
 
(4.3.2.7) ∀ e ∈ A \ {a,b}: N[e,b] ≥ N[e,a]. 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.8) ∀ e ∈ A \ {a,b}: (N[a,e],N[e,a]) D (N[b,e],N[e,b]). 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.9) ∀ e ∈ A \ {a,b}: (N[e,b],N[b,e]) D (N[e,a],N[a,e]). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative a. With (4.3.2.8) and (4.3.2.9), we get: a,c(2),...,c(n–1),b is a path 
from alternative a to alternative b with at least the same strength. Therefore 

 
(4.3.2.10) PD[a,b] D PD[b,a]. 
 
With (4.3.2.10), we get (4.3.2.2). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative f ∈ A \ {a,b}. With (4.3.2.8), we get: a,c(m+1),...,c(n), where c(m) 
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is the last occurrence of an alternative of the set {a,b}, is a path from 
alternative a to alternative f with at least the same strength. Therefore 

 
(4.3.2.11) ∀ f ∈ A \ {a,b}: PD[a,f] D PD[b,f]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative                   
f ∈ A \ {a,b} to alternative a. With (4.3.2.9), we get: c(1),...,c(m–1),b, where 
c(m) is the first occurrence of an alternative of the set {a,b}, is a path from 
alternative f to alternative b with at least the same strength. Therefore 

(4.3.2.12) ∀ f ∈ A \ {a,b}: PD[f,b] D PD[f,a]. 

Part 1: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13a) bf ∈ . 

With (4.3.2.13a), we get 

(4.3.2.14a) PD[b,f] D PD[f,b]. 

With (4.3.2.11), (4.3.2.14a), and (4.3.2.12), we get 

(4.3.2.15a) PD[a,f] D PD[b,f] D PD[f,b] D PD[f,a]. 

With (4.3.2.15a), we get (4.3.2.3). 

Part 2: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13b) fa ∈ . 

With (4.3.2.13b), we get 

(4.3.2.14b) PD[f,a] D PD[a,f]. 

With (4.3.2.12), (4.3.2.14b), and (4.3.2.11), we get 

(4.3.2.15b) PD[f,b] D PD[f,a] D PD[a,f] D PD[b,f]. 

With (4.3.2.15b), we get (4.3.2.4). 

Part 3: Suppose 

(4.3.2.13c) b ∈ . 

With (4.3.2.13c), we get 

(4.3.2.14c) ∀ f ∈ A \ {b}: fb ∉ . 

With (4.3.2.4) and (4.3.2.14c), we get 

(4.3.2.15c) ∀ f ∈ A \ {a,b}: fa ∉ . 

With (4.3.2.2) and (4.3.2.15c), we get 

(4.3.2.16c) ∀ f ∈ A \ {a}: fa ∉ . 

With (4.3.2.16c), we get (4.3.2.5).      □ 
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4.4. Reversal Symmetry 
 
Reversal symmetry as a criterion for single-winner election methods has 

been proposed by Saari (1994). This criterion says that, when v is reversed 
for all v ∈ V, then also the result of the elections must be reversed; see 
(4.4.2). old must not be a strict subset of new; new must not be a strict 
subset of old; see (4.4.3). It should not be possible that the same alternatives 
are elected in the original situation and in the reversed situation, unless all 
alternatives are tied; see (4.4.4). 

 
Basic idea of this criterion is that, when there is a vote on the best 

alternatives and then there is a vote on the worst alternatives and when in 
both cases the same alternatives are chosen, then this questions the logic of 
the underlying heuristic of the used election method. 

 
Definition: 

 
An election method satisfies reversal symmetry if the following holds: 

 
Suppose: 
 

(4.4.1) ∀ e,f ∈ A ∀ v ∈ V: e  v
old  f ⇔ f  v

new  e. 
 

Then: 
 

(4.4.2) ∀ a,b ∈ A: ab ∈ old ⇔ ba ∈ new. 
 
(4.4.3) ( ∃ i ∈ A: i ∈ old ∧ i ∉ new ) ⇔ 

( ∃ j ∈ A: j ∉ old ∧ j ∈ new ). 
 
(4.4.4) old = new ⇔ old = A. 
 

Claim: 
 
The Schulze method, as defined in section 2.2, satisfies reversal symmetry. 

  



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 81 

Proof: 
 
With (4.4.1), we get 

(4.4.5) ∀ e,f ∈ A: Nold[e,f] = Nnew[f,e]. 

With (4.4.5), we get 

(4.4.6) ∀ e,f ∈ A: (Nold[e,f],Nold[f,e]) ≈D (Nnew[f,e],Nnew[e,f]). 

With (4.4.6), we get: When c(1),...,c(n) ∈ A was a path from alternative  
g ∈ A to alternative h ∈ A \ {g}, then c(n),...,c(1) is a path from alternative h 
to alternative g with the same strength. Therefore 

(4.4.7) ∀ g,h ∈ A: P old
D [g,h] ≈D P new

D [h,g]. 

With (4.4.7), we get (4.4.2). 

Part 1: 
 

Suppose ∃ i ∈ A: i ∈ old and i ∉ new. With i ∉ new and (4.1.14), we get 
that there is a j ∈ new with ji ∈ new. With (4.4.2), we get ij ∈ old and, 
therefore, j ∉ old. With j ∉ old and j ∈ new, we get the “⇒” direction of 
(4.4.3). The proof for the “⇐” direction of (4.4.3) is analogous. 

 
Part 2: 
 

Suppose old = A. Then we get old = ∅. Otherwise, if there was an         
ij ∈ old, we would immediately get j ∉ old and, therefore, old ≠ A. With 
old = ∅ and (4.4.2), we get new = ∅ and, therefore, new = A. With old = A 
and new = A, we get old = new. 

 
Part 3: 

Suppose old ≠ A. Then there is a j ∉ old. With (4.1.14), we get that there 
is an i ∈ old with ij ∈ old. With (4.4.2), we get ji ∈ new and, therefore,       
i ∉ new. With i ∈ old and i ∉ new, we get old ≠ new. With part 2 and part 
3, we get (4.4.4).          □ 
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4.5. Monotonicity 
 
Monotonicity says that, when some voters rank alternative a ∈ A higher 

[see (4.5.1) and (4.5.2)] without changing the order in which they rank the 
other alternatives relatively to each other [see (4.5.3)], then this must not 
hurt alternative a [see (4.5.4) – (4.5.6)]. Monotonicity is also known as 
mono-raise and non-negative responsiveness. 

 
Definition: 
 

An election method satisfies monotonicity if the following holds: 
 

Suppose a ∈ A. Suppose the ballots are modified in such a manner 
that the following three statements are satisfied: 
 

(4.5.1) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v
old  f ⇒ a  v

new  f. 
 
(4.5.2) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v

old  f ⇒ a  v
new  f. 

 
(4.5.3) ∀ e,f ∈ A \ {a} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then: 

 
(4.5.4) ∀ b ∈ A \ {a}: ab ∈ old ⇒ ab ∈ new. 
 
(4.5.5) ∀ b ∈ A \ {a}: ba ∉ old ⇒ ba ∉ new. 
 
(4.5.6) a ∈ old ⇒ a ∈ new ⊆ old. 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies monotonicity. 
 

Proof: 
 

Part 1: 
 
With (4.5.1), we get 
 
(4.5.7) ∀ f ∈ A \ {a}: Nold[a,f] ≤ Nnew[a,f]. 
 
With (4.5.2), we get 
 
(4.5.8) ∀ f ∈ A \ {a}: Nold[f,a] ≥ Nnew[f,a]. 
 
With (4.5.3), we get 
 
(4.5.9) ∀ e,f ∈ A \ {a}: Nold[e,f] = Nnew[e,f]. 
 
With (2.1.1), (4.5.7), and (4.5.8), we get 
 
(4.5.10) ∀ f ∈ A \ {a}: (Nold[a,f],Nold[f,a]) D (Nnew[a,f],Nnew[f,a]). 
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With (2.1.1), (4.5.7), and (4.5.8), we get 

(4.5.11) ∀ f ∈ A \ {a}: (Nold[f,a],Nold[a,f]) D (Nnew[f,a],Nnew[a,f]). 

With (4.5.9), we get 

(4.5.12) ∀ e,f ∈ A \ {a}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ A was the strongest path from alternative a to 
alternative b ∈ A \ {a}. Then with (4.5.10) and (4.5.12), we get: c(1),...,c(n) 
is a path from alternative a to alternative b with at least the same strength. 
Therefore 

(4.5.13) ∀ b ∈ A \ {a}: P new
D [a,b] D P old

D [a,b]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b ∈ A \ {a} 
to alternative a. Then with (4.5.11) and (4.5.12), we get: c(1),...,c(n) was a 
path from alternative b to alternative a with at least the same strength. 
Therefore 

(4.5.14) ∀ b ∈ A \ {a}: P old
D [b,a] D P new

D [b,a]. 

With (4.5.13) and (4.5.14), we get (4.5.4) and (4.5.5). 

Part 2: 

It remains to prove (4.5.6). Suppose a ∈ old. Then “ a ∈ new ” follows 
directly from (4.5.5). To prove “ new ⊆ old ”, we have to prove: h ∉ old ⇒ 
h ∉ new. 

As a ∈ old, we get 

(4.5.15) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 

Suppose h ∉ old. Then, according to (4.1.14), there must have been an 
alternative g ∈ old with 

(4.5.16) P old
D [g,h] D P old

D [h,g]. 

With (4.5.10) – (4.5.12) and (4.5.16), we get: P new
D [g,h] D P new

D [h,g], 
unless at least one of the following two cases occurred. 

Case 1: xa was a weakest link in the strongest path from 
alternative g to alternative h. 

Case 2: ay was the weakest link in the strongest path from 
alternative h to alternative g. 

With (4.5.15), we get: P old
D [a,h] D P old

D [h,a]. For P old
D [a,h] D P old

D [h,a], 
we would, with (4.5.4), immediately get P new

D [a,h] D P new
D [h,a], so that 

alternative h is still not a potential winner. Therefore, without loss of 
generality, we can presume g ∈ old \ {a} and 

(4.5.17) P old
D [a,h] ≈D P old

D [h,a].  
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With a ∈ old and g ∈ old \ {a}, we get 

(4.5.18) P old
D [a,g] ≈D P old

D [g,a]. 

With (2.2.5), we get 

(4.5.19) minD { P old
D [g,h], P old

D [h,a] } D P old
D [g,a]. 

(4.5.20) minD { P old
D [h,a], P old

D [a,g] } D P old
D [h,g]. 

Case 1: Suppose xa was a weakest link in the strongest path from 
alternative g to alternative h. Then 

(4.5.21a)  P old
D [g,h] ≈D P old

D [g,a] and 

(4.5.22a)  P old
D [a,h] D P old

D [g,h]. 

Now (4.5.18), (4.5.21a), and (4.5.16) give 

(4.5.23a)  P old
D [a,g] ≈D P old

D [g,a] ≈D P old
D [g,h] D P old

D [h,g], 

while (4.5.17), (4.5.22a), and (4.5.16) give 

(4.5.24a)  P old
D [h,a] ≈D P old

D [a,h] D P old
D [g,h] D P old

D [h,g]. 

But (4.5.23a) and (4.5.24a) together contradict (4.5.20). 

Case 2: Suppose ay was the weakest link in the strongest path from 
alternative h to alternative g. Then 

(4.5.21b)  P old
D [h,g] ≈D P old

D [a,g] and 

(4.5.22b)  P old
D [h,a] D P old

D [h,g]. 

Now (4.5.22b), (4.5.21b), and (4.5.18) give 

(4.5.23b)  P old
D [h,a] D P old

D [h,g] ≈D P old
D [a,g] ≈D P old

D [g,a], 

while (4.5.16), (4.5.21b), and (4.5.18) give 

(4.5.24b)  P old
D [g,h] D P old

D [h,g] ≈D P old
D [a,g] ≈D P old

D [g,a]. 

But (4.5.23b) and (4.5.24b) together contradict (4.5.19). 

We have proven that neither case 1 nor case 2 is possible. Therefore 

(4.5.25) P new
D [g,h] D P new

D [h,g]. 

With (4.5.25), we get: h ∉ new.       □ 



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 85 

4.6. Independence of Clones 
 

Independence of clones as a criterion for single-winner election methods 
has been proposed by Tideman (1987). This criterion says that running a 
large number of similar alternatives, so-called clones, must not have any 
impact on the result of the elections. 

 
The precise definition for a set of clones stipulates that every voters ranks 

all the alternatives of this set in a consecutive manner; see (4.6.1) and 
(4.6.2). Replacing an alternative d ∈ Aold by a set of clones K should not 
change the winner; see (4.6.7) and (4.6.8). 

 
This criterion is very desirable especially for referendums because, while 

it might be difficult to find several candidates who are simultaneously 
sufficiently popular to campaign with them and sufficiently similar to misuse 
them for this strategy, it is usually very simple to formulate a large number 
of almost identical proposals. For example: In 1969, when the Canadian city 
that is now known as Thunder Bay was amalgamating, there was some 
controversy over what the name should be. In opinion polls, a majority of the 
voters preferred the name The Lakehead to the name Thunder Bay. But when 
the polls opened, there were three names on the referendum ballot: Thunder 
Bay, Lakehead, and The Lakehead. As the ballots were counted using 
plurality voting, it was not a surprise when Thunder Bay won. The votes 
were as follows: Thunder Bay 15870, Lakehead 15302, The Lakehead 8377 
(Cretney, 2000). 
 
Definition: 
 

An election method is independent of clones if the following holds: 
 
Suppose d ∈ Aold. Suppose Anew : = ( Aold ∪ K ) \ {d}. 
 
Suppose alternative d is replaced by the set of alternatives K in 
such a manner that the following three statements are satisfied: 
 

(4.6.1) ∀ e ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: e  v
old  d ⇔ e  v

new  g. 
 
(4.6.2) ∀ f ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: d  v

old  f ⇔ g  v
new  f. 

 
(4.6.3) ∀ e,f ∈ Aold \ {d} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then the following statements are satisfied: 

 
(4.6.4) ∀ a ∈ Aold \ {d} ∀ g ∈ K: ad ∈ old ⇔ ag ∈ new. 
 
(4.6.5) ∀ b ∈ Aold \ {d} ∀ g ∈ K: db ∈ old ⇔ gb ∈ new. 
 
(4.6.6) ∀ a,b ∈ Aold \ {d}: ab ∈ old ⇔ ab ∈ new. 
 
(4.6.7) d ∈ old ⇔ new ∩ K ≠ ∅. 
 
(4.6.8) ∀ a ∈ Aold \ {d}: a ∈ old ⇔ a ∈ new. 
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Claim: 

The Schulze method, as defined in section 2.2, is independent of clones. 

Proof: 

With (4.6.1), we get 

(4.6.9) ∀ e ∈ Aold \ {d} ∀ g ∈ K: Nold[e,d] = Nnew[e,g]. 

With (4.6.2), we get 

(4.6.10) ∀ f ∈ Aold \ {d} ∀ g ∈ K: Nold[d,f] = Nnew[g,f]. 

With (4.6.3), we get 

(4.6.11) ∀ e,f ∈ Aold \ {d}: Nold[e,f] = Nnew[e,f]. 

With (4.6.9) and (4.6.10), we get 

(4.6.12) ∀ e ∈ Aold \ {d} ∀ g ∈ K: (Nold[e,d],Nold[d,e]) ≈D (Nnew[e,g],Nnew[g,e]). 

With (4.6.9) and (4.6.10), we get 

(4.6.13) ∀ f ∈ Aold \ {d} ∀ g ∈ K: (Nold[d,f],Nold[f,d]) ≈D (Nnew[g,f],Nnew[f,g]). 

With (4.6.11), we get 

(4.6.14) ∀ e,f ∈ Aold \ {d}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative           
a ∈ Aold \ {d} to alternative d. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(n–1),g is a path from alternative a to alternative g ∈ K with the 
same strength. Therefore 

(4.6.15) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P new
D [a,g] D P old

D [a,d]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative              
a ∈ Anew \ K to alternative g ∈ K. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(m–1),d, where c(m) is the first occurrence of an alternative of the 
set K, was a path from alternative a to alternative d with at least the same 
strength. Therefore 

(4.6.16) ∀ a ∈ Anew \ K ∀ g ∈ K: P old
D [a,d] D P new

D [a,g]. 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative d to 
alternative b ∈ Aold \ {d}. Then with (4.6.13) and (4.6.14), we get: 
g,c(2),...,c(n) is a path from alternative g ∈ K to alternative b with the same 
strength. Therefore 

(4.6.17) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P new
D [g,b] D P old

D [d,b]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative g ∈ K to 
alternative b ∈ Anew \ K. Then with (4.6.13) and (4.6.14), we get: 
d,c(m+1),...,c(n), where c(m) is the last occurrence of an alternative of the set 
K, was a path from alternative d to alternative b with at least the same 
strength. Therefore 

(4.6.18) ∀ b ∈ Anew \ K ∀ g ∈ K: P old
D [d,b] D P new

D [g,b]. 
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(α) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative              
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} did not contain alternative d. 
Then with (4.6.14), we get: c(1),...,c(n) is still a path from alternative a to 
alternative b with the same strength. Therefore: P new

D [a,b] D P old
D [a,b]. 

(β) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative             
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} contained alternative d. Then 
with (4.6.12), (4.6.13), and (4.6.14), we get: c(1),...,c(n), with alternative d 
replaced by an arbitrarily chosen alternative g ∈ K, is still a path from 
alternative a to alternative b with the same strength. Therefore:                     
P new

D [a,b] D P old
D [a,b]. 

With (α) and (β), we get 

(4.6.19) ∀ a,b ∈ Aold \ {d}: P new
D [a,b] D P old

D [a,b]. 

(γ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) does not contain 
alternatives of the set K. Then with (4.6.14), we get: c(1),...,c(n) was a path 
from alternative a to alternative b with the same strength. Therefore:            
P old

D [a,b] D P new
D [a,b]. 

(δ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) contains some alternatives 
of the set K. Then with (4.6.12), (4.6.13), and (4.6.14), we get:      
c(1),...,c(s–1),d,c(t+1),...,c(n), where c(s) is the first occurrence of an 
alternative of the set K and c(t) is the last occurrence of an alternative of the 
set K, was a path from alternative a to alternative b with at least the same 
strength. Therefore: P old

D [a,b] D P new
D [a,b]. 

With (γ) and (δ), we get 

(4.6.20) ∀ a,b ∈ Anew \ K: P old
D [a,b] D P new

D [a,b]. 

Combining (4.6.15) and (4.6.16) gives 

(4.6.21) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P old
D [a,d] ≈D P new

D [a,g]. 

Combining (4.6.17) and (4.6.18) gives 

(4.6.22) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P old
D [d,b] ≈D P new

D [g,b]. 

Combining (4.6.19) and (4.6.20) gives 

(4.6.23) ∀ a,b ∈ Aold \ {d}: P old
D [a,b] ≈D P new

D [a,b]. 

With (4.6.21) – (4.6.23), we get (4.6.4) – (4.6.6). 

Part 1: 

Suppose d ∈ old. Then 

(4.6.24) ∀ a ∈ Aold \ {d}: ad ∉ old. 
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With (4.6.4) and (4.6.24), we get 

(4.6.25) ∀ a ∈ Anew \ K ∀ g ∈ K: ag ∉ new. 

Since the binary relation new, as defined in (2.2.1), is asymmetric and 
transitive, there must be an alternative k ∈ K with 

(4.6.26) ∀ l ∈ K \ {k}: lk ∉ new. 

With (4.6.25) and (4.6.26), we get k ∈ new ∩ K and, therefore, new ∩ K ≠ ∅. 

Part 2: 

Suppose d ∉ old. Then 

(4.6.27) ∃ a ∈ Aold \ {d}: ad ∈ old. 

With (4.6.4) and (4.6.27), we get 

(4.6.28) ∃ a ∈ Anew \ K ∀ g ∈ K: ag ∈ new. 

With (4.6.28), we get: new ∩ K = ∅. 

With part 1 and part 2, we get (4.6.7).  

Part 3: 

Suppose a ∈ Aold \ {d} and a ∈ old. Then 

(4.6.29) da ∉ old. 

(4.6.30) ∀ b ∈ Aold \ {a,d}: ba ∉ old. 

With (4.6.5) and (4.6.29), we get 

(4.6.31) ∀ g ∈ K: ga ∉ new. 

With (4.6.6) and (4.6.30), we get 

(4.6.32) ∀ b ∈ Anew \ ( K ∪ {a} ): ba ∉ new. 

With (4.6.31) and (4.6.32), we get: a ∈ new. 

Part 4: 

Suppose a ∈ Aold \ {d} and a ∉ old. Then at least one of the following 
two statements must have been valid: 

(4.6.33a) da ∈ old. 

(4.6.33b) ∃ b ∈ Aold \ {a,d}: ba ∈ old. 

With (4.6.5), (4.6.6), and (4.6.33), we get that at least one of the 
following two statements must be valid: 

(4.6.34a) ∀ g ∈ K: ga ∈ new. 

(4.6.34b) ∃ b ∈ Anew \ ( K ∪ {a} ): ba ∈ new. 

With (4.6.34), we get: a ∉ new. 
 
With part 3 and part 4, we get  (4.6.8).       □  
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4.7. Smith 
 

The Smith criterion and Smith-IIA (where IIA means “independence of 
irrelevant alternatives”) say that weak alternatives should have no impact on 
the result of the elections. 

 
Suppose: 
 
(4.7.1) ∅ ≠ B1 ⊊ A, ∅ ≠ B2 ⊊ A, B1 ∪ B2 = A, B1 ∩ B2 = ∅. 
 
(4.7.2) ∀ a ∈ B1 ∀ b ∈ B2: N[a,b] > N[b,a]. 
 
Then a weak alternative in the Smith paradigm is an alternative b ∈ B2. 

Adding or removing a weak alternative b ∈ B2 should have no impact on the 
set  of winners. 
 
Definition: 

An election method satisfies the Smith criterion if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.3) ∀ a ∈ B1 ∀ b ∈ B2: ab ∈ . 
 
(4.7.4) ∅ ≠  ⊆ B1. 
 

Remark: 

If B1 consists of only one alternative a ∈ A, then this is the so-called 
Condorcet criterion (Condorcet, 1785). If B2 consists of only one alternative 
b ∈ A, then this is the so-called Condorcet loser criterion. 

Claim: 
 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the Smith criterion. 
 

Proof: 
  
The proof is trivial. Presumption (2.1.5) guarantees that any pairwise 

victory is stronger than any pairwise defeat. If a ∈ B1 and b ∈ B2, then already 
the link ab is a path from alternative a to alternative b that consists only of a 
pairwise victory. On the other side, (4.7.2) says that there cannot be a path 
from alternative b to alternative a that contains no pairwise defeat. So already 
the link ab is stronger than any path from alternative b to alternative a.      □ 
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Definition: 

An election method satisfies Smith-IIA if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.5) If d ∈ B2 is removed, then 
 

(a) ∀ e,f ∈ B1: ef ∈ old ⇔ ef ∈ new. 
 
(b) old = new. 
 

(4.7.6) If d ∈ B1 is removed, then 
∀ e,f ∈ B2: ef ∈ old ⇔ ef ∈ new. 

 
Claim: 

If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 
satisfies Smith-IIA. 

Proof: 

We will prove (4.7.5)(a). The proof for (4.7.6) is analogous. 

(4.7.5)(b) follows directly from (4.7.4) and (4.7.5)(a). 

Part 1: Suppose e,f ∈ B1. Suppose ef ∈ old. Then 

(4.7.7) P old
D [e,f] D P old

D [f,e]. 

With (2.2.3), we get 

(4.7.8) P old
D [e,f] D (N[e,f],N[f,e]). 

With (4.7.7) and (2.2.3), we get 

(4.7.9) P old
D [e,f] D P old

D [f,e] D (N[f,e],N[e,f]). 

With (4.7.8) and (4.7.9), we get 
 
(4.7.10) P old

D [e,f] D maxD { (N[e,f],N[f,e]), (N[f,e],N[e,f]) }. 
 
With (4.7.2), we get: Any path from alternative e ∈ B1 to alternative         

f ∈ B1 that contained alternative d ∈ B2 necessarily contained a pairwise 
defeat. 

 
As it is not possible that the link ef is a pairwise defeat and that 

simultaneously the link fe is a pairwise defeat, maxD { (N[e,f],N[f,e]), (N[f,e], 
N[e,f]) } is stronger than any pairwise defeat [ because of (2.1.5) ]. Therefore, 
with (4.7.2) and (4.7.10), we get: The strongest path from alternative e ∈ B1 
to alternative f ∈ B1 did not contain alternative d ∈ B2. Therefore 

 
(4.7.11) P new

D [e,f] ≈D P old
D [e,f]. 
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As the elimination of alternative d ∈ B2 only removes paths, we get 
 
(4.7.12) P new

D [f,e] D P old
D [f,e]. 

 
With (4.7.11), (4.7.7), and (4.7.12), we get 
 
(4.7.13) P new

D [e,f] ≈D P old
D [e,f] D P old

D [f,e] D P new
D [f,e]. 

 
With (4.7.13), we get: ef ∈ new. 
 
Part 2: The proof “ ef ∉ old ⇒ ef ∉ new ” is analogous.    □ 
 
The majority criterion for solid coalitions says that, when a majority of 

the voters strictly prefers every alternative of a given set of alternatives to 
every alternative outside this set of alternatives, then the winner must be 
chosen from this set. In short, an election method satisfies the majority 
criterion for solid coalitions if the following holds: 

Suppose (4.7.1). 
Suppose ║{ v ∈ V | ∀ a ∈ B1 ∀ b ∈ B2: a v b }║ > N/2. 
Then  ⊆ B1. 

 
If B1 consists of only one alternative a ∈ A, then this is the so-called 

majority criterion. If B2 consists of only one alternative b ∈ A, then this is 
the so-called majority loser criterion. 

Participation says that adding a list W of ballots, on which every 
alternative of a given set of alternatives is strictly preferred to every 
alternative outside this set, must not hurt the alternatives of this set. In short, 
an election method satisfies participation if the following holds: 

 
Suppose (4.7.1). 
Suppose ∀ a ∈ B1 ∀ b ∈ B2 ∀ w ∈ W: a w b. 
Suppose Vnew : = Vold + W. 
 
Then (4.7.14) ∀ e ∈ B1 ∀ f ∈ B2: ef ∈ old ⇒ ef ∈ new. 
 (4.7.15) ∀ e ∈ B1 ∀ f ∈ B2: fe ∉ old ⇒ fe ∉ new. 
 (4.7.16) old ∩ B1 ≠ ∅ ⇒ new ∩ B1 ≠ ∅. 

(4.7.17) old ∩ B2 = ∅ ⇒ new ∩ B2 = ∅. 
 

The Smith criterion implies the majority criterion for solid coalitions, the 
Condorcet criterion, and the Condorcet loser criterion. The majority criterion 
for solid coalitions implies the majority criterion and the majority loser 
criterion. The Condorcet criterion implies the majority criterion. The 
Condorcet loser criterion implies the majority loser criterion. Unfortunately, 
the Condorcet criterion is incompatible with the participation criterion 
(Moulin, 1988). Example 5 shows a drastic violation of the participation 
criterion. 
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4.8. MinMax Set 
 
For all ∅ ≠ B ⊊ A, we define 
 
(4.8.1) ΓD(B) : = maxD { (N[x,y],N[y,x]) | x ∉ B, y ∈ B }. 
 
Furthermore, we define 
 
(4.8.2) βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A }. 
 
(4.8.3) BD : =  { ∅ ≠ B ⊊ A | ΓD(B) ≈D βD }. 
 
BD is the MinMax set. BD has the following properties: 
 

1. BD ≠ ∅. 
 
2. If BD consists of only one alternative a ∈ A, then alternative a is 

the unique Simpson-Kramer winner ( i.e. that alternative a ∈ A 
with minimum maxD { (N[b,a],N[a,b]) | b ∈ A \ {a} } ). 

 
3. If d ∈ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = ( BD ∪ K ) \ {d}. 

 
4. If d ∉ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = BD. 

 
So, in some sense, the MinMax set BD is a clone-proof generalization of 

the Simpson-Kramer winner. 
 
When we want primarily that the used election method is independent of 

clones and secondarily that the strongest link ef, that is overruled when 
determining the winner, is minimized, then we have to demand that the 
winner is always chosen from the MinMax set BD. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, has the following 

properties: 
 
(4.8.4) ∀ a ∈ BD ∀ b ∉ BD: ab ∈ . 
 
(4.8.5)  ⊆ BD. 
 

Proof: 
 
Suppose a ∈ BD. Then we get 
 
(4.8.6) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B. 

 
Suppose b ∉ BD. Then we get 
 
(4.8.7) γD : = minD { ΓD(B) | ∅ ≠ B ⊊ A and b ∈ B } D βD. 
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We will prove the following claims: 
 

Claim #1: PD[b,a] D βD. 
Claim #2: PD[a,b] D γD. 

With claim #1, claim #2, and (4.8.7), we get 

(4.8.8) PD[a,b] D γD D βD D PD[b,a]. 

With (4.8.8), we get (4.8.4). With (4.8.4), we get (4.8.5). 

Proof of claim #1: 

With (4.8.6) and (4.8.7), we get 

(4.8.9) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B and b ∉ B. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 
alternative a. Suppose c(i) is the last alternative with c(i) ∉ B. Then we get 
(N[c(i),c(i+1)],N[c(i+1),c(i)]) D βD. Therefore, we get 

(4.8.10) PD[b,a] D βD. 

Proof of claim #2: 

We can construct a path from alternative a to alternative b with a strength 
of at least γD as follows: 

(1) We start with E1 : = {a} and i : = 1. Trivially, we get b ∉ E1 and 
PD[a,h] D γD for all h ∈ E1 \ {a}. 

(2) At each stage, we consider the set Bi : = A \ Ei. 

With b ∈ Bi and with (4.8.7), we get 

(4.8.11)  ΓD(Bi) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We choose f ∈ Ei and g ∈ Bi with 

(4.8.12)  (N[f,g],N[g,f]) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We define Ei+1 : = Ei ∪ {g}. 

With f ∈ Ei, with PD[a,h] D γD for all h ∈ Ei \ {a}, with (N[f,g], 
N[g,f]) D γD, and with Ei+1 : = Ei ∪ {g}, we get 

(4.8.13)  PD[a,h] D γD for all h ∈ Ei+1 \ {a}. 

(3) We repeat stage 2 with i → i+1, until g ≡ b. 
 
Therefore, we get 
 
(4.8.14) PD[a,b] D γD.        □ 
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Example 6 shows that IPDA and the desideratum, that the winner is 
always chosen from the MinMax set BD, are incompatible. In example 
6(old), we get B old

D  = {a, c, d}. In example 6(new), we get B new
D  = {b}. 

Therefore, B old
D  ∩ B new

D  = ∅. Thus, the desideratum, that the winner is 
always chosen from the MinMax set BD, implies that the winner is changed. 

 
Actually, the Schulze method can be described completely with the 

desideratum to find a binary relation  on A that, primarily, is independent 
of clones (as defined in section 4.6) and that, secondarily, tries to rank the 
alternatives according to their worst defeats. 

 
For all a,b ∈ A, we define 
 
(4.8.15) γD[a,b] : = minD { ΓD(B) | ∅ ≠ B ⊊ A and a ∉ B and b ∈ B }. 
 
(4.8.16) ab ∈  : ⇔ γD[a,b] D γD[b,a]. 

 
To prove that (4.8.16) is identical to (2.2.1), we have to prove γD[a,b] = 

PD[a,b]. This proof is identical to the proof for (4.8.4). 
 

Example 1 
 
In example 1 (section 3.1), we have: 
 
ΓD(B) : = maxD { (N[x,y],N[y,x]) | x ∉ B, y ∈ B }. 
 
ΓD({a}) = (13,8). 
ΓD({b}) = (19,2). 
ΓD({c}) = (14,7). 
ΓD({d}) = (12,9). 
ΓD({a,b}) = (19,2). 
ΓD({a,c}) = (13,8). 
ΓD({a,d}) = (13,8). 
ΓD({b,c}) = (19,2). 
ΓD({b,d}) = (15,6). 
ΓD({c,d}) = (14,7). 
ΓD({a,b,c}) = (19,2). 
ΓD({a,b,d}) = (15,6). 
ΓD({a,c,d}) = (13,8). 
ΓD({b,c,d}) = (14,7). 
 
βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A }. 
 
βD = (12,9). 
 
BD : =  { ∅ ≠ B ⊊ A | ΓD(B) ≈D βD }. 
 
BD = {d}. 
 
So with (4.8.5), we get  = {d}. 
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γD[x,y] : = minD { ΓD(B) | ∅ ≠ B ⊊ A and x ∉ B and y ∈ B }. 
 
γD[a,b] = ΓD({b,c,d}) = (14,7). 
γD[a,c] = ΓD({c}) = ΓD({c,d}) = ΓD({b,c,d}) = (14,7). 
γD[a,d] = ΓD({d}) = (12,9). 
γD[b,a] = ΓD({a}) = ΓD({a,c}) = ΓD({a,d}) = ΓD({a,c,d}) = (13,8). 
γD[b,c] = ΓD({a,c}) = ΓD({a,c,d}) = (13,8). 
γD[b,d] = ΓD({d}) = (12,9). 
γD[c,a] = ΓD({a}) = ΓD({a,d}) = (13,8). 
γD[c,b] = ΓD({b,d}) = ΓD({a,b,d}) = (15,6). 
γD[c,d] = ΓD({d}) = (12,9). 
γD[d,a] = ΓD({a}) = ΓD({a,c}) = (13,8). 
γD[d,b] = ΓD({b}) = ΓD({a,b}) = ΓD({b,c}) = ΓD({a,b,c}) = (19,2). 
γD[d,c] = ΓD({a,c}) = (13,8). 
 

4.9. Prudence 
 
Prudence as a criterion for single-winner election methods has been 

proposed by Köhler (1978) and generalized by Arrow and Raynaud (1986). 
This criterion says that the strength λD of the strongest link ef, that is not 
respected by the binary relation , should be as weak as possible. So          
λD : = maxD { (N[e,f],N[f,e]) | ef ∉  } should be minimized. 

 
A directed cycle is a sequence of alternatives c(1),...,c(n) ∈ A with the 
following properties: 

 
1. c(1) ≡ c(n). 
2. n ∈  with 3 ≤ n < ∞. 
3. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 

 
It is obvious that, when there is a directed cycle c(1),...,c(n), then the 

strongest link, that is not respected by the binary relation , is at least as 
strong as the weakest link c(i),c(i+1) of this directed cycle. Therefore, we get: 

 
(4.9.1) λD D minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
As we have to make this consideration for all directed cycles, the 

maximum, that we can ask for, is the following criterion. 
 

Definition: 
 
Suppose λD ∈ 0 × 0 is the strength of the strongest directed cycle. 
 
(4.9.2) λD : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a directed cycle }. 
 

Then an election method is prudent if the following holds: 
 
(4.9.3) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ ab ∈ . 
 
(4.9.4) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ b ∉ . 
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Claim: 
 
The Schulze method, as defined in section 2.2, is prudent. 
 

Proof: 
 
The proof is trivial. With (2.2.4), we get: ab ∈ , unless the link ab is in 

a directed cycle that consists of links of which each is at least as strong as 
the link ab.          □ 

 
Example 1 

 
In example 1 (section 3.1), the strongest directed cycle (measured by the 

strength of its weakest link) is a,(14,7),c,(15,6),b,(13,8),a with a strength of 
λD ≈D (13,8). So prudence says that the collective ranking  must respect all 
links that are stronger than (13,8). 

 
(N[d,b],N[b,d]) = (19,2) D (13,8) ≈D λD ⇒ db ∈ . 
 
(N[c,b],N[b,c]) = (15,6) D (13,8) ≈D λD ⇒ cb ∈ . 
 
(N[a,c],N[c,a]) = (14,7) D (13,8) ≈D λD ⇒ ac ∈ . 
 
With db ∈ , cb ∈ , and ac ∈ , we get b ∉  and c ∉ . 
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4.10. Schwartz 
 
The Schwartz criterion as a criterion for single-winner election methods 

has been proposed by Schwartz (1986). The Schwartz criterion implies the 
Smith criterion. 

 
A chain from alternative x ∈ A to alternative y ∈ A is a sequence of 

alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 
5. For all i = 1,...,(n–1): N[c(i),c(i+1)] > N[c(i+1),c(i)]. 

 
Definition: 

An election method satisfies the Schwartz criterion if the following holds: 
 

Suppose there is a chain from alternative a ∈ A to alternative b ∈ A 
and no chain from alternative b to alternative a. Then: 

 
(4.10.1) ab ∈ . 
 
(4.10.2) b ∉ . 
 

Claim: 
 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the Schwartz criterion. 
 

Proof: 
  
The proof is trivial.         □ 
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4.11. Weak Condorcet Winners and Weak Condorcet Losers 
 
A Condorcet winner is an alternative a ∈ A that wins every head-to-head 

contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.1) Alternative a ∈ A is a Condorcet winner : ⇔ 
N[a,b] > N[b,a] for all b ∈ A \ {a}. 

A Condorcet loser is an alternative a ∈ A that loses every head-to-head 
contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.2) Alternative a ∈ A is a Condorcet loser : ⇔ 
N[a,b] < N[b,a] for all b ∈ A \ {a}. 

A weak Condorcet winner is an alternative a ∈ A that doesn’t lose any 
head-to-head contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.3) Alternative a ∈ A is a weak Condorcet winner : ⇔ 
N[a,b] ≥ N[b,a] for all b ∈ A \ {a}. 

A weak Condorcet loser is an alternative a ∈ A that doesn’t win any 
head-to-head contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.4) Alternative a ∈ A is a weak Condorcet loser : ⇔ 
N[a,b] ≤ N[b,a] for all b ∈ A \ {a}. 

Suppose  is the set of weak Condorcet winners. Then we get: 

(4.11.5) a ∈  : ⇔ N[a,b] ≥ N[b,a] for all b ∈ A \ {a}. 

Suppose  is the set of weak Condorcet losers. Then we get: 

(4.11.6) a ∈  : ⇔ N[a,b] ≤ N[b,a] for all b ∈ A \ {a}. 

  



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 99 

A frequently stated desideratum says that, when there is a weak 
Condorcet winner, then he should win. 

When there happens to be exactly one potential winner x ∈ A and exactly 
one weak Condorcet winner y ∈ A, it is obvious what the above desideratum 
means: Alternative x and alternative y must be the same alternative. 

In other words: 

(4.11.7) |  | = 1 and |  | = 1 ⇒  = . 

However, when there happens to be more than one potential winner or 
more than one weak Condorcet winner, the proper formulation for the above 
desideratum isn’t obvious. The most intuitive formulation is: 

(4.11.8)  ≠ ∅ ⇒  = . 

Unfortunately, the following example demonstrates that (4.11.8) is 
incompatible with reversal symmetry: 

Suppose there are four alternatives A = {a,b,c,d}. Suppose  
Nold[a,b] = Nold[b,a], Nold[a,c] = Nold[c,a], Nold[a,d] = Nold[d,a],  
Nold[b,c] > Nold[c,b], Nold[c,d] > Nold[d,c], and Nold[d,b] > Nold[b,d]. 
Then we get old = {a}. With (4.11.8), we get old = {a}. 

When the individual preferences are reversed, as defined               
in (4.4.1), we get Nnew[a,b] = Nnew[b,a], Nnew[a,c] = Nnew[c,a],                  
Nnew[a,d] = Nnew[d,a], Nnew[b,c] < Nnew[c,b], Nnew[c,d] < Nnew[d,c], and 
Nnew[d,b] < Nnew[b,d]. Therefore, new = {a}. With (4.11.8), we get 
new = {a}. 

But old = {a} and new = {a} together contradict (4.4.4). 

In short: It can happen that the same alternative is the unique weak 
Condorcet winner in the original situation and, simultaneously, the unique 
weak Condorcet winner in the reversed situation. Therefore, (4.11.8) cannot 
be compatible with reversal symmetry. 
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Furthermore, the following example demonstrates that (4.11.8) is 
incompatible with independence of clones: 

Suppose there are only two alternatives Aold = {a,b}. Suppose 
N[a,b] = N[b,a]. Then we get old = {a,b}. With (4.11.8), we get     
old = {a,b}. 

When alternative a is replaced by alternatives a1,a2,a3 such that 
N[a1,a2] > N[a2,a1], N[a2,a3] > N[a3,a2], and N[a3,a1] > N[a1,a3]       
and such that (4.6.1) – (4.6.3) are satisfied, then we get new = {b}.      
With (4.11.8), we get new = {b}. But with (4.6.7) and a ∈ old,        
we get new ∩ {a1,a2,a3} ≠ ∅. Therefore, (4.6.7) and (4.11.8) are 
incompatible with each other. 

In short: When a weak Condorcet winner is replaced by a set of clones, as 
defined in (4.6.1) – (4.6.3), it is not guaranteed that at least one of these 
clones is a weak Condorcet winner. Therefore, (4.11.8) cannot be compatible 
with independence of clones. 

The above examples demonstrate that, to satisfy reversal symmetry and 
independence of clones, we have, in some situations, to allow alternatives, 
which are not weak Condorcet winners, to be among the potential winners. 

So the maximum, that we could ask for, is: 

(4.11.9)  ⊆ . 

Formulation (4.11.9) says that every weak Condorcet winner should be a 
potential winner, but it makes no stipulations about those alternatives which 
are not weak Condorcet winners. In (4.11.9), the presumption “  ≠ ∅ ” is 
not needed. We don’t have to write “  ≠ ∅ ⇒  ⊆  ” because the empty 
set is, by definition, subset of every set. 

The following proof demonstrates that the Schulze method satisfies 
(4.11.9) and that, therefore, (4.11.9) is compatible with reversal symmetry 
and independence of clones. 
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Claim: 

If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 
section 2.2, satisfies (4.11.7) and (4.11.9). 

Proof: 

As (4.11.9) implies (4.11.7), it is sufficient to prove that the Schulze 
method satisfies (4.11.9). 

Step 1: 

(2.1.4) says that all ties have equivalent strengths. So without loss of 
generality, we can set 

(4.11.10) ∀ x ∈ 0: (x,x) ≈D (1,1). 

Step 2: 

Suppose a ∈ A is a weak Condorcet winner. Then, for every b ∈ A \ {a}, 
the link ab is already a path from alternative a to alternative b that contains 
no defeat. Therefore, with (2.1.5) and (4.11.10), we get 

(4.11.11) ∀ a ∈  ∀ b ∈ A \ {a}: PD[a,b] D (N[a,b],N[b,a]) D (1,1). 

Step 3: 

Suppose a ∈ A is a weak Condorcet winner. Suppose b ∈ A \ {a}. 
Suppose the link ca is the last link in the strongest path from alternative b to 
alternative a. As alternative a is a weak Condorcet winner, the link ca is 
either a tie or a defeat. Therefore, with (2.1.5) and (4.11.10), we get 

(4.11.12) ∀ a ∈  ∀ b ∈ A \ {a} ∃ c ∈ A \ {a}: PD[b,a] D (N[c,a],N[a,c]) D (1,1). 

With (4.11.11) and (4.11.12), we get 

(4.11.13) ∀ a ∈  ∀ b ∈ A \ {a}: PD[a,b] D PD[b,a]. 

With (4.11.13), we get 

(4.11.14) a ∈  ⇒ a ∈ . 

With (4.11.14), we get (4.11.9).        □ 
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Another frequently stated desideratum says that a weak Condorcet loser 
should not win. So with (4.11.6), we get 

(4.11.15) ∀ a ∈ A: ( a ∈  ⇒ a ∉  ). 

However, a problem with desideratum (4.11.15) is that it can happen that 
alternative a ∈ A is a weak Condorcet loser and, simultaneously, a weak 
Condorcet winner. In this case, alternative a ∈ A must win according to 
(4.11.9) and must not win according to (4.11.15). 

Example: Suppose there are only C = 2 alternatives a,b ∈ A. Suppose 
there is a pairwise tie, N[a,b] = N[b,a]. Then both alternatives are weak 
Condorcet losers and, simultaneously, weak Condorcet winners. With 
(4.11.9), we get a ∈  and b ∈ . With (4.11.15), we get a ∉  and b ∉ . 

So the maximum, that we could ask for, is: 

(4.11.16) ∀ a ∈ A: ( a ∈  and a ∉  ⇒ a ∉  ). 

Desideratum (4.11.16) says that a weak Condorcet loser should not win, 
unless it is also a weak Condorcet winner. The following proof demonstrates 
that the Schulze method satisfies (4.11.16) and that, therefore, there is no 
need to weaken (4.11.16) any further. 

Claim: 

If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 
satisfies (4.11.16). 

Proof: 

With a ∈ , we get 

(4.11.17) ∀ b ∈ A \ {a}: N[a,b] ≤ N[b,a]. 

With a ∉ , we get 

(4.11.18) ∃ b ∈ A \ {a}: N[a,b] < N[b,a]. 

When we take the alternative b ∈ A \ {a} from (4.11.18), then the link ba 
is already a path from alternative b to alternative a that contains no tie or 
defeat. 

Suppose the link ac is the first link in the strongest path from alternative a 
to alternative b. As alternative a is a weak Condorcet loser, the link ac is 
either a tie or a defeat. Therefore, with (2.1.5), (4.11.17), and (4.11.18), we get 

(4.11.19) PD[b,a] D (N[b,a],N[a,b]) D (N[a,c],N[c,a]) D PD[a,b]. 

So alternative b disqualifies alternative a. So a ∉ .     □ 
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4.12. Sequential Independence 
 

Sequential independence says that, when alternative a ∈ A is a winner, 
then there must be an alternative d ∈ A \ {a} such that, when the used 
election method is applied to A \ {d}, then alternative a is still a winner. 

The name for this criterion comes from the fact that  when the used 
election method satisfies this criterion and when alternative a ∈ A is a winner 
and alternative d(1) ∈ A \ {a} is an alternative such that, when the used 
election method is applied to A \ {d(1)}, then alternative a is still a winner  
the same criterion can then be applied to A \ {d(1)} to identify an alternative 
d(2) ∈ A \ {a,d(1)} such that, when the used election method is applied        
to A \ {d(1),d(2)}, then alternative a is still a winner. When we continue 
applying this criterion, we get a linear order d(1),...,d(C–1) of the alternatives 
in A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a winner 
when the used election method is applied to A \ {d(1),...,d(i)}. 

The motivation for this criterion is that an alternative a ∈ A should        
be able to win only by disqualifying all the other alternatives directly or 
indirectly in some manner. It should not be possible that some alternatives  
∅ ≠ {d(1),...,d(i)} ⊊ A disqualify each other in such a manner that the final 
winner comes from outside of {d(1),...,d(i)}. When sequential independence 
is satisfied, then one alternative after the other is disqualified, so that the 
final winner a ∈ A can come from outside of {d(1),...,d(i)} only when the 
last remaining alternative d(j) ∈ {d(1),...,d(i)} is disqualified by some 
alternatives outside of {d(1),...,d(i)}. 

Sequential independence as a criterion for single-winner election methods 
has been proposed by Arrow and Raynaud (1986) and generalized by 
Lansdowne (1996). 

Definition #1: 
 

An election method satisfies the first version of sequential independence 
if the following holds: 

 
Suppose alternative a ∈ A is a unique winner when this election 
method is applied to A. Then there must be a (not necessarily 
unique) alternative d ∈ A \ {a} such that, when this election method 
is applied to A \ {d}, then alternative a is still a unique winner. 

 
Claim #1: 

 
The Schulze method, as defined in section 2.2, satisfies the first version 

of sequential independence. 
 

Proof of claim #1: 
 
Suppose alternative a ∈ A is a unique winner when this election method 

is applied to A. Then, according to (4.1.15), alternative a disqualifies every 
other alternative b ∈ A \ {a}. Therefore, we get 

(4.12.1) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 
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Suppose predold[a,x] is the predecessor of alternative x ∈ A \ {a} in the 
strongest path from alternative a to alternative x, as calculated in section 2.3. 
Then a leaf is an alternative y ∈ A \ {a} such that there is no alternative          
x ∈ A \ {a} with predold[a,x] = y. As the strongest paths from alternative a to 
every other alternative x ∈ A \ {a}, as calculated by the Floyd algorithm, form 
an arborescence, there must be at least one leaf. Alternative d is chosen 
arbitrarily from these leaves. 

 
Suppose alternative d is removed. As alternative d is a leaf, alternative d 

is not in the strongest path from alternative a to any other alternative            
b ∈ A \ {a,d}. Therefore, we get 

 
(4.12.2) ∀ b ∈ A \ {a,d}: P new

D [a,b] ≈D P old
D [a,b]. 

On the other side, when an alternative is removed, then the strengths of 
the strongest paths can only decrease. Therefore, we get 

(4.12.3) ∀ b ∈ A \ {a,d}: P new
D [b,a] D P old

D [b,a]. 

With (4.12.2), (4.12.1), and (4.12.3), we get 

(4.12.4) ∀ b ∈ A \ {a,d}: P new
D [a,b] ≈D P old

D [a,b] D P old
D [b,a] D P new

D [b,a] 

so that alternative a is still a unique winner when alternative d is 
removed.           □ 

Definition #2: 
 

An election method satisfies the second version of sequential 
independence if the following holds: 

 
Suppose alternative a ∈ A is a potential winner when this election 
method is applied to A. Then there must be a (not necessarily 
unique) alternative d ∈ A \ {a} such that, when this election method 
is applied to A \ {d}, then alternative a is still a potential winner. 

 
Claim #2: 

 
The Schulze method, as defined in section 2.2, satisfies the second version 

of sequential independence. 
 

Proof of claim #2: 
 
Suppose alternative a ∈ A is a potential winner when this election method 

is applied to A. Then, we get 

(4.12.5) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 

The rest of this proof is identical to the proof of claim #1.     □ 
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4.13. k-Consistency 
 
The Condorcet criterion says that, when some candidate a ∈ A wins every 

head-to-head contest, then this candidate a should also be the overall winner 
(Condorcet, 1785). 

However, many countries have a strong 3-party, 4-party or 5-party 
system where no single party can win a majority and where every party is 
willing to coalesce with every other party. In such a scenario, it seems to be 
rather uninteresting which candidate might win in a head-to-head contest. It 
is more interesting to ask whether there is some candidate who wins 
regardless of which candidates are nominated by the other parties. 

So for example in the 3-party case with party α, party β, and party γ, it 
might be more interesting to ask whether there is a candidate from party α 
who wins every 3-way contest between himself and a candidate from party β 
and a candidate from party γ. If there is such a candidate, then this candidate 
should also be the overall winner. 

More generally, if there is a k ∈  with k ≥ 2 such that there is an 
alternative a ∈ A such that alternative a wins every k-way contest, then 
alternative a should also be the overall winner. This criterion is called         
k-consistency. 

k-consistency as a criterion for single-winner election methods has been 
proposed by Heitzig (2004) and Simmons (2004). However, a similar idea 
had already been formulated by Saari (2001, pages 154–156). To question 
the relevance of the Condorcet criterion, Saari argued that it could happen 
that some alternative a ∈ A wins every 2-way contest, some other alternative 
b ∈ A \ {a} wins every 3-way contest, some other alternative c ∈ A \ {a,b} 
wins every 4-way contest, etc., so that, with the same justification, every 
alternative could claim to be the overall winner. However, the fact that the 
Schulze method satisfies k-consistency for every k ∈  with k ≥ 2 means that 
there are election methods where Saari’s scenario is not possible, so that his 
criticism of the Condorcet criterion doesn’t work. 
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There are five different versions for k-consistency. 

The first version addresses unique winners. This version says that, when 
alternative a ∈ A is a unique winner in every k-way contest, then alternative a 
should also be a unique winner overall. For k = 2, the first version of            
k-consistency is identical to the Condorcet criterion (section 4.7). 

The second version addresses potential winners. This version says that, 
when alternative a ∈ A is a potential winner in every k-way contest, then 
alternative a should also be a potential winner overall. For k = 2, the second 
version of k-consistency is identical to the desideratum that weak Condorcet 
winners should always be potential winners (section 4.11). 

The third version addresses the set of winners. This version says that, 
when in every k-way contest (that contains at least one alternative of the set 
∅ ≠ B ⊊ A) the winner comes from the set B, then the winner must also 
come from the set B when the method is applied to A. For k = 2, the third 
version of k-consistency is identical to the Smith criterion (section 4.7). 

The fourth version says that, when alternative a ∈ A is not a unique 
winner in any k-way contest, then alternative a should also be not a unique 
winner overall. For k = 2, the fourth version of k-consistency is identical to 
the desideratum that a weak Condorcet loser should not be a unique winner 
(section 4.11). 

The fifth version says that, when alternative a ∈ A is not a potential 
winner in any k-way contest, then alternative a should also be not a potential 
winner overall. For k = 2, the fifth version of k-consistency is identical to the 
Condorcet loser criterion (section 4.7). 
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4.13.1. Formulation #1 
 
Definition: 
 

Suppose k ∈  with k ≥ 2. An election method satisfies the first version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose alternative 
a ∈ A is a unique winner whenever this election method is applied to 
some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. Then alternative a is also 
a unique winner when this election method is applied to A. 

 
Claim: 

 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the first version of k-consistency for every k ∈  with k ≥ 2. 
 

Proof (overview): 
 
We will show how, when alternative a ∈ A is not a unique winner (when 

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is not a unique winner. 

Proof (details): 
 
Suppose alternative a ∈ A is not a unique winner when the Schulze 

method is applied to A. Then there must be an alternative b ∈ A \ {a} with 
 
(4.13.1.1) PD[b,a] D PD[a,b]. 
 
We set 
 
(4.13.1.2) (z1,z2) : = PD[b,a] 
 
to stress that this value is constant for the rest of this proof. 
 
Suppose c(1),...,c(n) is the strongest path from alternative b ≡ c(1) to 

alternative a ≡ c(n). Then we get 
 
(4.13.1.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
Especially, we get 
 
(4.13.1.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
When there is more than one path from alternative b to alternative a of 

strength (z1,z2) then, without loss of generality, we take the shortest of these 
paths (in terms of its number of links). Therefore, we get 

 
(4.13.1.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
 
Otherwise, if there was a link c(i),c(j) with (N[c(i),c(j)],N[c(j),c(i)]) D 

(z1,z2) and j – i ≥ 2, then we could find a shorter path of strength (z1,z2) by 
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omitting the alternatives c(i+1),...,c(j–1). This would be a contradiction to 
the presumption that c(1),...,c(n) is the shortest path of strength (z1,z2). 

 
With (2.1.5), we get that every path that contains no defeat is always 

stronger than every path that contains a defeat. 
 
It is easy to prove that, for every pair of alternatives x,y ∈ A, there is a 

path from alternative x to alternative y that contains no defeat or a path from 
alternative y to alternative x that contains no defeat. To prove this, we only 
have to consider the links xy and yx because the link xy is already a path 
from alternative x to alternative y and the link yx is already a path from 
alternative y to alternative x. If N[x,y] > N[y,x], then the link xy is a path 
from alternative x to alternative y that contains no defeat. If N[x,y] < N[y,x], 
then the link yx is a path from alternative y to alternative x that contains no 
defeat. If N[x,y] = N[y,x], then the link xy is a path from alternative x to 
alternative y that contains no defeat and the link yx is a path from alternative 
y to alternative x that contains no defeat. 

 
With (4.13.1.1) and the above considerations, we get that the path 

c(1),...,c(n) contains no defeat. {Otherwise: Suppose the path c(1),...,c(n) 
contains a defeat. Then [as, for every pair of alternatives x,y ∈ A, there is a 
path from alternative x to alternative y that contains no defeat or a path from 
alternative y to alternative x that contains no defeat] there must be a path 
d(1),...,d(r) from alternative b to alternative a that contains no defeat or a 
path e(1),...,e(s) from alternative a to alternative b that contains no defeat. If 
there is a path d(1),...,d(r) from alternative b to alternative a that contains no 
defeat then, according to (2.1.5), this path is stronger than the path 
c(1),...,c(n) that contains a defeat; this is a contradiction to the presumption 
that the path c(1),...,c(n) is the strongest path from alternative b to alternative 
a. If there is no path from alternative b to alternative a that contains no 
defeat, but a path e(1),...,e(s) from alternative a to alternative b that contains 
no defeat then, according to (2.1.5), this path is stronger than the path 
c(1),...,c(n) that contains a defeat; this is a contradiction to (4.13.1.1).} 
Especially, the link c(n–1),c(n) is not a defeat. Therefore, we get 

 
(4.13.1.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] ≥ N[c(i+1),c(i)]. 
 
Especially, we get 
 
(4.13.1.7) N[c(n–1),c(n)] ≥ N[c(n),c(n–1)]. 
 
With (2.1.5) and (4.13.1.7), we get 
 
(4.13.1.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
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With the above considerations, we can now show how the subset Ã ⊆ A 
can be chosen. 

 
Case #1: k = 2. 

 
When D satisfies (2.1.5), then the first version of 2-consistency, 
applied to the Schulze method, means that the Schulze method 
should satisfy the Condorcet criterion. However, it has already 
been proven in section 4.7 that the Schulze method satisfies the 
Condorcet criterion when D satisfies (2.1.5). 
 

Case #2: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.1.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of more than (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.1.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.1.8), the link c(n),c(n–1) is not 
stronger than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n) cannot disqualify alternative c(n–1). So 
either alternative c(n–1) is also a potential winner or, according to 
(4.1.14), alternative c(n–1) must be disqualified by some other 
potential winner. In both cases, alternative c(n) is not a unique 
winner. 
 

Case #3: k ≥ n. 
 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.1.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of more than (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(n) cannot disqualify alternative c(1). So 
either alternative c(1) is also a potential winner or, according to 
(4.1.14), alternative c(1) must be disqualified by some other 
potential winner. In both cases, alternative c(n) is not a unique 
winner.          □ 
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4.13.2. Formulation #2 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the second 
version of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose alternative 
a ∈ A is a potential winner whenever this election method is applied 
to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. Then alternative a is 
also a potential winner when this election method is applied to A. 

 
Claim: 

 
If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 

section 2.2, satisfies the second version of k-consistency for every k ∈  
with k ≥ 2. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is not a potential winner 

(when this election method is applied to A), we can create, for every k ∈  
with 2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is not a potential winner. 

Proof (details): 
 
Suppose alternative a ∈ A is not a potential winner when the Schulze 

method is applied to A. Then there must be an alternative b ∈ A \ {a} with 
 
(4.13.2.1) PD[b,a] D PD[a,b]. 
 
We set 
 
(4.13.2.2) (z1,z2) : = PD[b,a] 
 
to stress that this value is constant for the rest of this proof. 
 
Suppose c(1),...,c(n) is the strongest path from alternative b ≡ c(1) to 

alternative a ≡ c(n). Then we get 
 
(4.13.2.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
Especially, we get 
 
(4.13.2.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
With the same arguments as for (4.13.1.5), we get 
 
(4.13.2.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
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With (2.1.4) and (2.1.5), we get that every path that contains no defeat or 
tie is always stronger than every path that contains a defeat or tie. 

 
It is easy to prove that the path c(1),...,c(n) contains no defeat or tie. 

Therefore, we get 
 
(4.13.2.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] > N[c(i+1),c(i)]. 
 
Especially, we get 
 
(4.13.2.7) N[c(n–1),c(n)] > N[c(n),c(n–1)]. 
 
With (2.1.5) and (4.13.2.7), we get 
 
(4.13.2.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
 
Proof for (4.13.2.6): 
 

It has already been shown in the proof in section 4.13.1 that, when 
D satisfies (2.1.5), then the path c(1),...,c(n) contains no defeat. So it 
remains to be proven that the path c(1),...,c(n) contains no tie. 

 
To prove that the path c(1),...,c(n) contains no tie, we presume   

that (2.1.4), (2.1.5), and (4.13.2.1) are satisfied and that the path 
c(1),...,c(n) contains a tie and then we will show that this leads to a 
contradiction. 

 
(2.1.4) says that all ties have equivalent strengths. (2.1.5) says that 

every win is stronger than every tie. So when the path c(1),...,c(n) 
contains no defeat, but at least one tie then, without loss of generality, 
we can set 

(4.13.2.9) PD[b,a] ≈D (1,1). 
 
To get to a contradiction, it is sufficient to consider the link ab. 
 
Case #A: If the link ab is a win ( i.e. N[a,b] > N[b,a] ) or a tie         

( i.e. N[a,b] = N[b,a] ), then this link is already a path from alternative 
a to alternative b that contains no defeat. Therefore, with (2.1.4), 
(2.1.5), and (4.13.2.9), we get PD[a,b] D (N[a,b],N[b,a]) D (1,1) ≈D 
PD[b,a]. But this is a contradiction to (4.13.2.1). 

 
Case #B: If the link ab is a defeat ( i.e. N[a,b] < N[b,a] ), then the 

link ba is a path from alternative b to alternative a that contains no 
defeat or tie. But then, according to (2.1.5), the link ba is stronger than 
the path c(1),...,c(n) that contains a tie. But this is a contradiction to 
the presumption that the path c(1),...,c(n) is the strongest path from 
alternative b to alternative a. 
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With the above considerations, we can now show how the subset Ã ⊆ A 
can be chosen. 

 
Case #1: k = 2. 

 
When D satisfies (2.1.4) and (2.1.5), then the second version       
of 2-consistency, applied to the Schulze method, means that        
the Schulze method should satisfy the desideratum that a weak 
Condorcet winner is always a potential winner. However, it has 
already  been proven in section 4.11 that the Schulze method 
satisfies this desideratum when D satisfies (2.1.4) and (2.1.5). 
 

Case #2: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.2.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.2.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.2.8), the link c(n),c(n–1) is weaker 
than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n–1) disqualifies alternative c(n), so that 
alternative c(n) is not a potential winner. 
 

Case #3: k ≥ n. 
 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.2.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of at least (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(1) disqualifies alternative c(n), so that 
alternative c(n) is not a potential winner.     □ 
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4.13.3. Formulation #3 
 
Definition: 
 

Suppose k ∈  with k ≥ 2. An election method satisfies the third version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose |Ã is 
the set of potential winners when this election method is applied to 
∅ ≠ Ã ⊆ A. Suppose ∅ ≠ B ⊊ A. Suppose |Ã ⊆ B whenever this 
election method is applied to some subset Ã ⊆ A with | Ã | = k and 
B ∩ Ã ≠ ∅. Then we must also get |A ⊆ B. In short: 
 
∀ ∅ ≠ B ⊊ A: ( ( ∀ Ã ⊆ A with | Ã | = k and B ∩ Ã ≠ ∅: |Ã ⊆ B ) ⇒ ( |A ⊆ B ) ). 

 
Claim: 

 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the third version of k-consistency for every k ∈  with k ≥ 2. 
 

Proof (overview): 
 
We will show how, when |A  B, we can create, for every k ∈  with     

2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and B ∩ Ã ≠ ∅ such that, when the 
Schulze method is applied to Ã, we get |Ã  B. 

Proof (details): 
 
Suppose r : = | B | is the number of alternatives in B. With ∅ ≠ B ⊊ A, we 

get: 0 < r < C. 
 
Suppose |A  B. Then there must be an alternative b ∈ A with b ∈ |A 

and b ∉ B. With b ∈ |A we get 
 
(4.13.3.1) ∀ a ∈ A \ {b}: PD[b,a] D PD[a,b]. 
 

Case #1: k = 2. 
 
When D satisfies (2.1.5), then the third version of 2-consistency, 
applied to the Schulze method, means that the Schulze method 
should satisfy the Smith criterion. However, it has already been 
proven in section 4.7 that the Schulze method satisfies the Smith 
criterion when D satisfies (2.1.5). 
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Case #2: k > C – r. 
 

In section 4.12, we have proven that, when alternative b ∈ A is a 
potential winner, then there is a linear order d(1),...,d(C–1) of the 
alternatives in A \ {b}, such that, when the Schulze method is 
applied to A \ {d(1),...,d(C–k)}, then alternative b is still a potential 
winner. 
 
As k > C – r, every set Ã ⊆ A with | Ã | = k contains at least            
k + r – C ≥ 1 alternatives of B. Therefore, we get B ∩ Ã ≠ ∅ for 
every set Ã ⊆ A with | Ã | = k. Therefore, we can choose Ã : =        
A \ {d(1),...,d(C–k)}. 

 
Case #3: 3 ≤ k ≤ C – r. 
 

We take some b ∈ A with b ∈ |A and b ∉ B. We sort the alternatives 
{a(1),...,a(C–1)} in A \ {b} such that 

 
∀ i,j ∈  with 1 ≤ i < C and 1 ≤ j < C: ( pred[b,a(j)] = a(i) ⇒ i < j ). 
 
Suppose y ∈  with 1 ≤ y < C is the smallest number with a(y) ∈ B. Then 

we get a(x) ∉ B for all x ∈  with 1 ≤ x < y. Furthermore, when d(1),...,d(m) 
is the strongest path from alternative b ≡ d(1) to alternative a(y) ≡ d(m) then, 
with the definition for pred[i,j] and with the definition for the order of 
{a(1),...,a(C–1)}, we get {d(1),...,d(m–1)} ⊆ {b,a(1),...,a(y–1)} ⊆ A \ B. 

 
We set 
 
(4.13.3.2) (z1,z2) : = PD[b,a(y)] 
 
to stress that this value is constant for the rest of this proof. 
 
We now shorten the path d(1),...,d(m) by removing possible short cuts.  

So when there is a link d(i),d(j) with (N[d(i),d(j)],N[d(j),d(i)]) D (z1,z2) and  
j – i ≥ 2, we remove the alternatives d(i+1),...,d(j–1) from this path. We 
continue removing possible short cuts, until the resulting path contains no 
short cuts anymore. The resulting path will be called c(1),...,c(n). 

 
We get c(i) ∉ B for all i ∈  with 1 ≤ i < n, because we have already 

established d(i) ∉ B for all i ∈  with 1 ≤ i < m and because, when we 
shortened the path d(1),...,d(m), we only removed and didn’t add alternatives. 

 
With the same arguments as for (4.13.1.3) – (4.13.1.8), we get (4.13.3.3) – (4.13.3.8): 
 
(4.13.3.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
(4.13.3.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
(4.13.3.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
 
(4.13.3.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] ≥ N[c(i+1),c(i)]. 
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(4.13.3.7) N[c(n–1),c(n)] ≥ N[c(n),c(n–1)]. 
 
(4.13.3.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
 
With the above considerations, we can now show how the subset Ã ⊆ A 

can be chosen. 
 

Case #3a: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.3.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of more than (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.3.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.3.8), the link c(n),c(n–1) is not 
stronger than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n) cannot disqualify alternative c(n–1). So 
either alternative c(n–1) is also a potential winner or, according to 
(4.1.14), alternative c(n–1) must be disqualified by some other 
potential winner in Ã. As c(i) ∉ B for all i ∈  with 1 ≤ i < n, this 
potential winner comes from outside B. 

 
Case #3b: n ≤ k ≤ C – r. 

 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A \ B. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.3.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of more than (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(n) cannot disqualify alternative c(1). So 
either alternative c(1) is also a potential winner or, according to 
(4.1.14), alternative c(1) must be disqualified by some other 
potential winner in Ã. As e ∉ B for all e ∈ Ã \ {c(n)}, this potential 
winner comes from outside B.       □ 
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4.13.4. Formulation #4 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the fourth version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose 
alternative a ∈ A is not a unique winner whenever this election 
method is applied to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. 
Then alternative a is also not a unique winner when this election 
method is applied to A. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, satisfies the fourth version 

of k-consistency for every k ∈  with k ≥ 2. 
 

Remark: 
 
Presumptions (2.1.4) and (2.1.5) are not needed in the following proof. 

However, only when D satisfies (2.1.4) and (2.1.5), the fourth version of   
k-consistency with k = 2 is identical to the desideratum that a weak 
Condorcet loser should not be a unique winner. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is a unique winner (when   

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is a unique winner. 

Proof (details): 
 
In section 4.12, we have proven that, when alternative a ∈ A is a unique 

winner, then there is a linear order d(1),...,d(C–1) of the alternatives in         
A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a unique 
winner when the Schulze method is applied to A \ {d(1),...,d(i)}. 

Therefore, for k ∈  with 2 ≤ k ≤ C, we can simply choose                       
Ã : = A \ {d(1),...,d(C–k)}.         □ 
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4.13.5. Formulation #5 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the fifth version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose 
alternative a ∈ A is not a potential winner whenever this election 
method is applied to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. 
Then alternative a is also not a potential winner when this election 
method is applied to A. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, satisfies the fifth version 

of k-consistency for every k ∈  with k ≥ 2. 
 

Remark: 
 
Presumption (2.1.5) is not needed in the following proof. However, only 

when D satisfies (2.1.5), the fifth version of k-consistency with k = 2 is 
identical to the Condorcet loser criterion. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is a potential winner (when 

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is a potential winner. 

Proof (details): 
 
In section 4.12, we have proven that, when alternative a ∈ A is a potential 

winner, then there is a linear order d(1),...,d(C–1) of the alternatives in         
A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a potential 
winner when the Schulze method is applied to A \ {d(1),...,d(i)}. 

Therefore, for k ∈  with 2 ≤ k ≤ C, we can simply choose                       
Ã : = A \ {d(1),...,d(C–k)}.         □ 
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5. Tie-Breaking 
 
It can happen that the weakest link in the strongest path from alternative a 

to alternative b and the weakest link in the strongest path from alternative b 
to alternative a are the same link, say cd. In this case, the Schulze method is 
indifferent between alternative a and alternative b, i.e. ab ∉  and ba ∉ . 
See sections 3.3, 3.8, 3.9, and 4.2. 

 
In this section, we recommend that, to resolve this indifference, the link 

cd should be declared forbidden and the strongest paths from alternative a   
to alternative b and from alternative b to alternative a, that don’t contain 
forbidden links, should be calculated. Either this indifference is now 
resolved or, again, the weakest link in the strongest path from alternative a  
to alternative b and the weakest link in the strongest path from alternative b    
to alternative a are the same link, say ef. In the latter case, the link ef is 
declared forbidden and the strongest paths that don’t contain forbidden links 
are calculated. This procedure is repeated until this indifference is resolved. 

 
The resulting Schulze relation will be called final. The resulting set of 

winners will be called final. The precise definitions for final and final will be 
given in (5.1.2) and (5.1.3). 

 
In example 3 (section 3.3), the link cd is the weakest link in the strongest 

path from alternative a to alternative b and the weakest link in the strongest 
path from alternative b to alternative a. Therefore, the link cd is declared 
forbidden. The strongest path from alternative a to alternative b, that doesn’t 
contain forbidden links, is a,(33,30),b. The strongest path from alternative b 
to alternative a, that doesn’t contain forbidden links, is b,(30,33),a. Therefore, 
we get ab ∈ final. 

 
5.1. Calculating a Complete Ranking Using 

a Tie-Breaking Ranking of the Links 
 

Suppose A×A is the set of linear orders on A × A. Then a Tie-Breaking 
Ranking of the Links (TBRL) is a linear order σ ∈ A×A with the following 
property: 

 
(5.1.1) (N[i,j],N[j,i]) D (N[m,n],N[n,m]) ⇒ ij σ mn. 
 
Suppose σ ∈ A×A is a linear order on A × A with property (5.1.1). Then 

we calculate final(σ) and final(σ) as described in stages 1–4: 
 
Stage 1 (initialization): 
 

1 for i : = 1 to C 
2 begin 
3 for j : = 1 to C 
4 begin 
5 if ( i ≠ j ) then 
6 begin 
7 Pσ[i,j] : = ij 
8 end 
9 end 

10 end 
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Stage 2 (calculation of the strengths of the strongest paths): 
 

11 for i : = 1 to C 
12 begin 
13 for j : = 1 to C 
14 begin 
15 if ( i ≠ j ) then 
16 begin 
17 for k : = 1 to C 
18 begin 
19 if ( i ≠ k ) then 
20 begin 
21 if ( j ≠ k ) then 
22 begin 
23 if ( Pσ[j,k] σ minσ { Pσ[j,i], Pσ[i,k] } ) then 
24 begin 
25 Pσ[j,k] : = minσ { Pσ[j,i], Pσ[i,k] } 
26 end 
27 end 
28 end 
29 end 
30 end 
31 end 
32 end 

 
Stage 3 (calculation of the binary relation  and the set of potential winners): 
 

33 final(σ) : = ∅ 
34 final(σ) : = A 
35 for i : = 1 to C 
36 begin 
37 for j : = 1 to C 
38 begin 
39 if ( i ≠ j ) then 
40 begin 
41 if ( Pσ[j,i] σ Pσ[i,j] ) then 
42 begin 
43 final(σ) : = final(σ) + {ji} 
44 final(σ) : = final(σ) \ {i} 
45 end 
46 end 
47 end 
48 end 
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Stage 4 (tie-breaking): 
 

49 xy : = minσ { ij | i,j ∈ {1,...,C}, i ≠ j } 
50 for m : = 1 to C–1 
51 begin 
52 for n : = m+1 to C 
53 begin 
54 if ( Pσ[m,n] ≈σ Pσ[n,m] ) then 
55 begin 
56 for i : = 1 to C 
57 begin 
58 for j : = 1 to C 
59 begin 
60 if ( i ≠ j ) then 
61 begin 
62 forbidden[i,j] : = false 
63 Qσ[i,j] : = Pσ[i,j] 
64 end 
65 end 
66 end 
67 bool1 : = false 
68 while ( bool1 = false ) 
69 begin 
70 for i : = 1 to C 
71 begin 
72 for j : = 1 to C 
73 begin 
74 if ( i ≠ j ) then 
75 begin 
76 if ( Qσ[m,n] ≈σ ij ) then 
77 begin 
78 forbidden[i,j] : = true 
79 end 
80 end 
81 end 
82 end 
83 for i : = 1 to C 
84 begin 
85 for j : = 1 to C 
86 begin 
87 if ( i ≠ j ) then 
88 begin 
89 if ( forbidden[i,j] = true ) then 
90 begin 
91 Qσ[i,j] : = xy 
92 end 
93 else 
94 begin 
95 Qσ[i,j] : = ij 
96 end 
97 end 
98 end 
99 end 
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100 for i : = 1 to C 
101 begin 
102 for j : = 1 to C 
103 begin 
104 if ( i ≠ j ) then 
105 begin 
106 for k : = 1 to C 
107 begin 
108 if ( i ≠ k ) then 
109 begin 
110 if ( j ≠ k ) then 
111 begin 
112 if ( Qσ[j,k] σ minσ { Qσ[j,i], Qσ[i,k] } ) then 
113 begin 
114 Qσ[j,k] : = minσ { Qσ[j,i], Qσ[i,k] } 
115 end 
116 end 
117 end 
118 end 
119 end 
120 end 
121 end 
122 if ( Qσ[m,n] σ Qσ[n,m] ) then 
123 begin 
124 final(σ) : = final(σ) + {mn} 
125 final(σ) : = final(σ) \ {n} 
126 bool1 : = true 
127 
128 

end 
else 

129 if ( Qσ[m,n] σ Qσ[n,m] ) then 
130 begin 
131 final(σ) : = final(σ) + {nm} 
132 final(σ) : = final(σ) \ {m} 
133 bool1 : = true 
134 end 
135 end 
136 end 
137 end 
138 end 

 
For each pair of alternatives m,n ∈ A, we check whether Pσ[m,n] ≈σ 

Pσ[n,m] (lines 50–55). In this case, the link ij with Pσ[m,n] ≈σ ij is declared 
forbidden (lines 70–82) and the strongest paths, that don’t contain forbidden 
links, are calculated (lines 83–121). This procedure is repeated (lines 67–68) 
until this indifference is resolved (lines 122–134). 

 
We define 
 
(5.1.2) final : = ∩ { final(σ) | σ ∈ A×A with (5.1.1) }. 
 
(5.1.3) final : =  { final(σ) | σ ∈ A×A with (5.1.1) }. 

  



Markus Schulze, “A new monotonic, clone-independent, reversal symmetric, 
and Condorcet-consistent single-winner election method” 

 122 

5.2. Calculating a Tie-Breaking Ranking of the Candidates 
and a Tie-Breaking Ranking of the Links 

 
The Schulze relation , as defined in (2.2.1), is only a strict partial order. 

However, sometimes, a linear order is needed. In this section, we will show 
how the Schulze relation  can be completed to a linear order without 
having to sacrifice any of the desired criteria. 
 
Step 1: 

A Tie-Breaking Ranking of the Links (TBRL), a linear order σ on     
A × A, and a Tie-Breaking Ranking of the Candidates (TBRC), a linear 
order μ on A, are calculated as follows: 

 
a) In the beginning:  
 

• ∀ (i,j),(m,n) ∈ A × A: (N[i,j],N[j,i]) D (N[m,n],N[n,m]) ⇒ ij σ mn. 
 

• ∀ (i,j),(m,n) ∈ A × A: (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) ⇒ ij ≈σ mn. 
 

• ∀ i,j ∈ A: i ≈μ j. 
 

b) Pick a random ballot v ∈ V and use its rankings. That means: 
 

• ∀ (i,j),(m,n) ∈ A × A: If ij ≈σ mn and  
 

(5.2.1) ( ( i v j ) ∧ ( m v n ) ) ∨ ( ( i v j ) ∧ ( m v n ) ) 
 
then replace “ ij ≈σ mn ” by “ ij σ mn ”. 
 

• ∀ i,j ∈ A: If i ≈μ j and i v j, then replace “ i ≈μ j ” by “ i μ j ”. 
 

When the bylaws require that the chairperson decides in the case 
of a tie, then, for the calculations of the TBRL and the TBRC, the 
ballot of the chairperson has to be chosen first. 

 
c) Continue picking ballots randomly from those that have not yet 

been picked and use their rankings. 
 
d) If you go through all ballots and there are still alternatives i,j ∈ A 

with i ≈μ j, then proceed as follows: 
 

d1) Pick a random alternative k and complete the TBRC in its 
favor. ( That means: For all alternatives l ∈ A \ {k} with k ≈μ l: 
Replace “ k ≈μ l ” by “ k μ l ”. ) 

 
d2) Continue picking alternatives randomly from those that have 

not yet been picked and complete the TBRC in their favor. 
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Step 2: 
Suppose there are still (i,j),(m,n) ∈ A × A with ij ≈σ mn, then proceed 
as follows: 
 
Variant 1: When at least one of the following conditions is satisfied, 
then replace “ ij ≈σ mn ” by “ ij σ mn ”: 

 
(5.2.2a) i μ j and n μ m. 
(5.2.3a) i μ j and m μ n and i μ m. 
(5.2.4a) j μ i and n μ m and n μ j. 
(5.2.5a) i ≡ m and n μ j. 
(5.2.6a) j ≡ n and i μ m. 

 
Variant 2: When at least one of the following conditions is satisfied, 
then replace “ ij ≈σ mn ” by “ ij σ mn ”: 
 

(5.2.2b) i μ j and n μ m. 
(5.2.3b) i μ j and m μ n and n μ j. 
(5.2.4b) j μ i and n μ m and i μ m. 
(5.2.5b) i ≡ m and n μ j. 
(5.2.6b) j ≡ n and i μ m. 

 
(5.2.2a) – (5.2.6a) and (5.2.2b) – (5.2.6b) are chosen in such a manner 
that e.g. when the TBRC μ is abcdefgh then links of otherwise 
equivalent strengths are sorted ah, ag, af, ae, ad, ac, ab, bh, bg, bf, be, 
bd, bc, ch, cg, cf, ce, cd, dh, dg, df, de, eh, eg, ef, fh, fg, gh, hg, gf, hf, 
fe, ge, he, ed, fd, gd, hd, dc, ec, fc, gc, hc, cb, db, eb, fb, gb, hb, ba, ca, 
da, ea, fa, ga, ha in variant 1 resp. ah, bh, ch, dh, eh, fh, gh, ag, bg, cg, 
dg, eg, fg, af, bf, cf, df, ef, ae, be, ce, de, ad, bd, cd, ac, bc, ab, ba, cb, 
ca, dc, db, da, ed, ec, eb, ea, fe, fd, fc, fb, fa, gf, ge, gd, gc, gb, ga, hg, 
hf, he, hd, hc, hb, ha in variant 2. 
 

Step 3: 
final(σ) and final(σ) are calculated as defined in section 5.1. The final 
winner is alternative a ∈ A with ba ∉ final(σ) for every b ∈ A \ {a}. 
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5.3. Transitivity 
 

In section 4.1, we have proven that the binary relation , as defined in 
(2.2.1), is transitive. Nevertheless, it isn’t intuitively clear whether also the 
binary relation final(σ), as defined in section 5.1, is transitive. It seems to be 
possible that ties Pσ[x,y] ≈σ Pσ[y,x] are resolved based on different sets of 
non-forbidden links, so that the transitivity of final(σ) doesn’t follow directly 
from the transitivity of . 

 
However, in the following proof, we will see that also the binary relation 

final(σ), as defined in section 5.1, is transitive. We will prove that ties 
Pσ[x,y] ≈σ Pσ[y,x] are either resolved based on the same set of non-forbidden 
links (sections 5.3.1, 5.3.4, and 5.3.5) or  in those cases, where these ties 
happen to be resolved based on different sets of non-forbidden links  they 
cannot violate transitivity (sections 5.3.2 and 5.3.3). 

 
5.3.1. Part 1 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.1.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.1.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.1.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.1.1), we get ab ∈  and, therefore, ab ∈ final(σ). 
 
With (5.3.1.2), we get bc ∈  and, therefore, bc ∈ final(σ). 
 
This situation is not possible because, when no link has been declared 

forbidden, then all paths are calculated based on the same set of non-
forbidden links. But in section 4.1, we have proven that, when all paths are 
calculated based on the same set of links, then the binary relation , as 
defined by Pσ[x,y] σ Pσ[y,x], is transitive. So, with Pσ[a,b] σ Pσ[b,a] and 
Pσ[b,c] σ Pσ[c,b], we immediately get Pσ[a,c] σ Pσ[c,a]. 

 
5.3.2. Part 2 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.2.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.2.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.2.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.2.1), we get ba ∈  and, therefore, ba ∈ final(σ). 
 
With (5.3.2.2), we get bc ∈  and, therefore, bc ∈ final(σ). 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.2.1) – (5.3.2.3). Then the weakest link in the strongest path from 
alternative a to alternative c and the weakest link in the strongest path from 
alternative c to alternative a must be the same link, say de. 
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Therefore, the strongest paths have the following structure: 
 
 

 
 
 
In this case, it can actually happen that the paths are based on different 

sets of non-forbidden links. In example 8 (section 3.8), we have a situation 
with Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] ≈σ Pσ[a,c] and where 
the link de is the weakest link in the strongest path from alternative a to 
alternative c and simultaneously the weakest link in the strongest path from 
alternative c to alternative a. So when we resolve Pσ[c,a] ≈σ Pσ[a,c], the link 
de has to be declared forbidden. The strongest path from alternative a to 
alternative c, that doesn’t contain the link de, is a,(24,21),c. The strongest 
path from alternative c to alternative a, that doesn’t contain the link de,         
is c,(25,20),b,(22,23),e,(30,15),a. So Pσ[c,a] ≈σ Pσ[a,c] is resolved to           
ac ∈ final(σ). 

 
Now the interesting observation is that the link de is also in  the strongest 

path from alternative b to alternative a. And the strongest path b,(22,23),e, 
(30,15),a from alternative b to alternative a, that doesn’t contain the link de, 
is weaker than the strongest path a,(26,19),b from alternative a to alternative 
b, that doesn’t contain the link de. Therefore, if we had to recalculate the 
strengths of the strongest paths from alternative a to alternative b and from 
alternative b to alternative a based on the fact that the link de has been 
declared forbidden { what we don’t have to do, because each of (5.3.2.1) – 
(5.3.2.3) is resolved separately, based on its own set of non-forbidden links }, 
we would get Pσ[a,b] σ Pσ[b,a]. 

 
Furthermore, the link de is in the strongest path from alternative b to 

alternative c. And the strongest path b,(22,23),e,(32,13),c from alternative b 
to alternative c, that doesn’t contain the link de, is weaker than the strongest 
path c,(25,20),b from alternative c to alternative b, that doesn’t contain the 
link de. Therefore, if we had to recalculate the strengths of the strongest 
paths from alternative b to alternative c and from alternative c to alternative 
b based on the fact that the link de has been declared forbidden, we would 
get Pσ[b,c] σ Pσ[c,b]. 

 
So example 8 (section 3.8) demonstrates that it can happen that (5.3.2.1) 

– (5.3.2.3) are resolved based on different sets of non-forbidden links. 
However, this is not a problem because  it doesn’t matter whether Pσ[c,a] 
≈σ Pσ[a,c] is resolved to Pσ[c,a] σ Pσ[a,c] or to Pσ[c,a] σ Pσ[a,c]  
transitivity will never be violated. 

a b c Pσ[b,c] 

Pσ[c,d] 

Pσ[e,c] Pσ[a,d] 

Pσ[e,a] 

(N[d,e],N[e,d])   d   e 

Pσ[b,a] 
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5.3.3. Part 3 
 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.3.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.3.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.3.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.3.1), we get ab ∈  and, therefore, ab ∈ final(σ). 
 
With (5.3.3.2), we get cb ∈  and, therefore, cb ∈ final(σ). 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.3.1) – (5.3.3.3). Then the weakest link in the strongest path from 
alternative a to alternative c and the weakest link in the strongest path from 
alternative c to alternative a must be the same link, say de. 

 
Therefore, the strongest paths have the following structure: 
 

 
 

In this case, it can actually happen that the paths are based on different 
sets of non-forbidden links. In example 9 (section 3.9), we have a situation 
with Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] ≈σ Pσ[a,c] and where 
the link de is the weakest link in the strongest path from alternative a to 
alternative c and simultaneously the weakest link in the strongest path from 
alternative c to alternative a. So when we resolve Pσ[c,a] ≈σ Pσ[a,c], the link 
de has to be declared forbidden. The strongest path from alternative a to 
alternative c, that doesn’t contain the link de, is a,(24,21),c. The strongest 
path from alternative c to alternative a, that doesn’t contain the link de,         
is c,(30,15),d,(22,23),b,(25,20),a. So Pσ[c,a] ≈σ Pσ[a,c] is resolved to           
ac ∈ final(σ). 

 
Now the interesting observation is that the link de is also in  the strongest 

path from alternative a to alternative b. And the strongest path a,(32,13),d, 
(22,23),b from alternative a to alternative b, that doesn’t contain the link de, 
is weaker than the strongest path b,(25,20),a from alternative b to alternative 
a, that doesn’t contain the link de. Therefore, if we had to recalculate the 
strengths of the strongest paths from alternative a to alternative b and from 
alternative b to alternative a based on the fact that the link de has been 
declared forbidden { what we don’t have to do, because each of (5.3.3.1) – 

a b c Pσ[c,b] 

Pσ[c,d] 

Pσ[e,c] Pσ[a,d] 

Pσ[e,a] 

(N[d,e],N[e,d])   d   e 

Pσ[a,b] 
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(5.3.3.3) is resolved separately, based on its own set of non-forbidden links }, 
we would get Pσ[a,b] σ Pσ[b,a]. 

 
Furthermore, the link de is in the strongest path from alternative c to 

alternative b. And the strongest path c,(30,15),d,(22,23),b from alternative c 
to alternative b, that doesn’t contain the link de, is weaker than the strongest 
path b,(26,19),c from alternative b to alternative c, that doesn’t contain the 
link de. Therefore, if we had to recalculate the strengths of the strongest 
paths from alternative b to alternative c and from alternative c to alternative 
b based on the fact that the link de has been declared forbidden, we would 
get Pσ[b,c] σ Pσ[c,b]. 

 
So example 9 (section 3.9) demonstrates that it can happen that (5.3.3.1) 

– (5.3.3.3) are resolved based on different sets of non-forbidden links. 
However, this is not a problem because  it doesn’t matter whether Pσ[c,a] 
≈σ Pσ[a,c] is resolved to Pσ[c,a] σ Pσ[a,c] or to Pσ[c,a] σ Pσ[a,c]  
transitivity will never be violated. 

 
5.3.4. Part 4 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.4.1) Pσ[a,b] ≈σ Pσ[b,a]. 
 
(5.3.4.2) Pσ[b,c] ≈σ Pσ[c,b]. 
 
(5.3.4.3) Pσ[c,a] σ Pσ[a,c]. 
 
With (5.3.4.3), we get ca ∈  and, therefore, ca ∈ final(σ). 
 
As the tie (5.3.4.1) and the tie (5.3.4.2) are resolved separately, it seems 

to be possible that they are resolved based on different sets of non-forbidden 
links, so that the transitivity of final(σ) doesn’t follow directly from the 
transitivity of . It seems to be possible that the tie (5.3.4.1) is resolved to 
Pσ[a,b] σ Pσ[b,a] and that simultaneously  as other links are declared 
forbidden during the process of resolving the tie (5.3.4.2), so that the 
strengths of the strongest paths are determined based on different sets of 
non-forbidden links  the tie (5.3.4.2) is resolved to Pσ[b,c] σ Pσ[c,b], so 
that the transitivity of final(σ) is violated. However, the following proof 
shows that transitivity will never be violated. 

 
Claim: 

 
Suppose (5.3.4.1) – (5.3.4.3) are resolved as prescribed in section 5.1. 

Then transitivity will never be violated. 
 

Proof: 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.4.1) – (5.3.4.3). Then the weakest link in the strongest path from 
alternative a to alternative b and the weakest link in the strongest path from 
alternative b to alternative a must be the same link, say de. Furthermore, the 
weakest link in the strongest path from alternative b to alternative c and the 
weakest link in the strongest path from alternative c to alternative b must be 
the same link, say fg. 
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Therefore, the strongest paths have the following structure: 
 
 

 
 

 
As de is the weakest link in the strongest path from alternative a to 

alternative b, we get 

(5.3.4.4) Pσ[a,d] σ (N[d,e],N[e,d]). 

(5.3.4.5) Pσ[e,b] σ (N[d,e],N[e,d]). 

As de is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(5.3.4.6) Pσ[b,d] σ (N[d,e],N[e,d]). 

(5.3.4.7) Pσ[e,a] σ (N[d,e],N[e,d]). 

As fg is the weakest link in the strongest path from alternative b to 
alternative c, we get 

(5.3.4.8) Pσ[b,f] σ (N[f,g],N[g,f]). 

(5.3.4.9) Pσ[g,c] σ (N[f,g],N[g,f]). 

As fg is the weakest link in the strongest path from alternative c to 
alternative b, we get 

(5.3.4.10) Pσ[c,f] σ (N[f,g],N[g,f]). 

(5.3.4.11) Pσ[g,b] σ (N[f,g],N[g,f]). 

With (5.3.4.4), (5.3.4.5), (5.3.4.8), and (5.3.4.9), we get: a → d → e → b 
→ f → g → c is a path from alternative a to alternative c with a strength of 
minσ { (N[d,e],N[e,d]), (N[f,g],N[g,f]) }. Therefore, with (5.3.4.3), we get 

(5.3.4.12) Pσ[c,a] σ minσ { (N[d,e],N[e,d]), (N[f,g],N[g,f]) }. 

  

d    

b 

g Pσ[e,a] 

Pσ[b,d] (N[d,e],N[e,d]) 

  f   e 

 c   a 

Pσ[a,d] 

(N[f,g],N[g,f]) 

Pσ[e,b] Pσ[b,f] 

Pσ[c,f] 

Pσ[g,c] 

Pσ[g,b] 

Pσ[c,a] 
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Case 1: Suppose 

(5.3.4.13a) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

Then, with (5.3.4.12), (5.3.4.4), (5.3.4.13a), and (5.3.4.5), we get: c → a 
→ d → e → b is a path from alternative c to alternative b with a strength of 
more than (N[f,g],N[g,f]). But this is a contradiction to the presumption that 
fg is the weakest link in the strongest path from alternative c to alternative b. 

Case 2: Suppose 

(5.3.4.13b) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

Then, with (5.3.4.8), (5.3.4.13b), (5.3.4.9), and (5.3.4.12), we get: b → f 
→ g → c → a is a path from alternative b to alternative a with a strength of 
more than (N[d,e],N[e,d]). But this is a contradiction to the presumption that 
de is the weakest link in the strongest path from alternative b to alternative a. 

As (5.3.4.13a) and (5.3.4.13b) are not possible, we get 

(5.3.4.13c) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]). 

As there are no links of equivalent strengths, (5.3.4.13c) means that de 
and fg are the same link. So to resolve (5.3.4.1) and (5.3.4.2), the same link 
is declared forbidden. 

Therefore, the strongest paths have the following structure: 
 
 

 
  

a b c 

Pσ[a,d] 

Pσ[e,b] Pσ[c,d] 

Pσ[e,c] 

Pσ[e,a] Pσ[b,d] 

(N[d,e],N[e,d])   e   d 

Pσ[c,a] 
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Without loss of generality, we can also say that the same link is declared 
forbidden in the process of resolving (5.3.4.3). The reason: With (5.3.4.12),     
we get that the link de cannot be in the strongest path from alternative c to 
alternative a. Therefore, the strongest path from alternative c to alternative a 
cannot be weakened by declaring the link de forbidden. The strongest path 
from alternative a to alternative c can be weakened by declaring the         
link de forbidden. But as we already know from (5.3.4.3) that the strongest 
path from alternative c to alternative a is stronger than the strongest path 
from alternative a to alternative c, declaring the link de forbidden cannot 
have an impact on the resolution of (5.3.4.3). 

When the link de is declared forbidden, we get one of the following 
cases: 

Case A: We still get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. In this 
case, with the same argumentation as in cases 1–2 we get that the same link, 
say d’e’, is the weakest link in the strongest path from alternative a to 
alternative b, the weakest link in the strongest path from alternative b to 
alternative a, the weakest link in the strongest path from alternative b to 
alternative c, and the weakest link in the strongest path from alternative c to 
alternative b. So we can proceed with declaring the link d’e’ forbidden until 
we get one of the cases B–G. 

Case B: We get ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ) or ( Pσ[a,b] 
σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ) or ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ 
Pσ[c,b] ). In this case, we succeeded in resolving (5.3.4.1) – (5.3.4.3) without 
violating transitivity. 

Case C: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
with Pσ[c,a] σ Pσ[a,c] and Pσ[a,b] σ Pσ[b,a] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[b,c] σ Pσ[c,b]. 

Case D: We get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
with Pσ[c,a] σ Pσ[a,c] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[a,b] σ Pσ[b,a]. 
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Case E: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] σ Pσ[a,c] together violate 
transitivity, as proven in section 4.1 for cases where all paths are based on 
the same set of non-forbidden links. 

Case F: We get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 
identical to the situation in section 5.3.2. It is possible that Pσ[a,b] ≈σ Pσ[b,a] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,b] ≈σ Pσ[b,a] is 
resolved to Pσ[a,b] σ Pσ[b,a] or to Pσ[a,b] σ Pσ[b,a]  transitivity will 
never be violated. 

 
Case G: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. This case is 

identical to the situation in section 5.3.3. It is possible that Pσ[b,c] ≈σ Pσ[c,b] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[b,c] ≈σ Pσ[c,b] is 
resolved to Pσ[b,c] σ Pσ[c,b] or to Pσ[b,c] σ Pσ[c,b]  transitivity will 
never be violated. 

 
The following table shows that cases A–G cover all possible 

combinations. Therefore, it has been proven for every possible situation that, 
when we resolve (5.3.4.1) – (5.3.4.3) as prescribed in section 5.1, then 
transitivity will never be violated. 

 
Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case A 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case F 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case C 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case E 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case G 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 
           □ 
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5.3.5. Part 5 
 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.5.1) Pσ[a,b] ≈σ Pσ[b,a]. 
 
(5.3.5.2) Pσ[b,c] ≈σ Pσ[c,b]. 
 
(5.3.5.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 

Claim: 
 
Suppose (5.3.5.1) – (5.3.5.3) are resolved as prescribed in section 5.1. 

Then transitivity will never be violated. 
 

Proof: 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.5.1) – (5.3.5.3). Then the weakest link in the strongest path from 
alternative a to alternative b and the weakest link in the strongest path from 
alternative b to alternative a must be the same link, say de. Furthermore, the 
weakest link in the strongest path from alternative b to alternative c and the 
weakest link in the strongest path from alternative c to alternative b must be 
the same link, say fg. Furthermore, the weakest link in the strongest path 
from alternative c to alternative a and the weakest link in the strongest path 
from alternative a to alternative c must be the same link, say hi. 

 
Therefore, the strongest paths have the following structure: 
 
 
 

 
 

 

d    

b 

g 

Pσ[c,h] 

Pσ[i,c] Pσ[a,h] 

Pσ[i,a] 

(N[h,i],N[i,h])   h   i 

Pσ[e,a] 

Pσ[b,d] (N[d,e],N[e,d]) 

  f   e 

 c   a 

Pσ[a,d] 

(N[f,g],N[g,f]) 

Pσ[e,b] Pσ[b,f] 

Pσ[c,f] 

Pσ[g,c] 

Pσ[g,b] 
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As de is the weakest link in the strongest path from alternative a to 
alternative b, we get 

(5.3.5.4) Pσ[a,d] σ (N[d,e],N[e,d]). 

(5.3.5.5) Pσ[e,b] σ (N[d,e],N[e,d]). 

As de is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(5.3.5.6) Pσ[b,d] σ (N[d,e],N[e,d]). 

(5.3.5.7) Pσ[e,a] σ (N[d,e],N[e,d]). 

As fg is the weakest link in the strongest path from alternative b to 
alternative c, we get 

(5.3.5.8) Pσ[b,f] σ (N[f,g],N[g,f]). 

(5.3.5.9) Pσ[g,c] σ (N[f,g],N[g,f]). 

As fg is the weakest link in the strongest path from alternative c to 
alternative b, we get 

(5.3.5.10) Pσ[c,f] σ (N[f,g],N[g,f]). 

(5.3.5.11) Pσ[g,b] σ (N[f,g],N[g,f]). 

As hi is the weakest link in the strongest path from alternative c to 
alternative a, we get 

(5.3.5.12) Pσ[c,h] σ (N[h,i],N[i,h]). 

(5.3.5.13) Pσ[i,a] σ (N[h,i],N[i,h]). 

As hi is the weakest link in the strongest path from alternative a to 
alternative c, we get 

(5.3.5.14) Pσ[a,h] σ (N[h,i],N[i,h]). 

(5.3.5.15) Pσ[i,c] σ (N[h,i],N[i,h]). 
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Case 1: Suppose 

(5.3.5.16a) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

(5.3.5.17a) (N[d,e],N[e,d]) σ (N[h,i],N[i,h]). 

Then, with (5.3.5.14), (5.3.5.17a), (5.3.5.15), (5.3.5.10), (5.3.5.16a),    
and (5.3.5.11), we get: a → h → i → c → f → g → b is a path from 
alternative a to alternative b with a strength of more than (N[d,e],N[e,d]). 
But this is a contradiction to the presumption that de is the weakest link in 
the strongest path from alternative a to alternative b. 

Similarly, with (5.3.5.8), (5.3.5.16a), (5.3.5.9), (5.3.5.12), (5.3.5.17a), 
and (5.3.5.13), we get: b → f → g → c → h → i → a is a path from 
alternative b to alternative a with a strength of more than (N[d,e],N[e,d]). 
But this is a contradiction to the presumption that de is the weakest link in 
the strongest path from alternative b to alternative a. 

Case 2: Suppose 

(5.3.5.16b) (N[f,g],N[g,f]) σ (N[d,e],N[e,d]). 

(5.3.5.17b) (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

Then, with (5.3.5.6), (5.3.5.16b), (5.3.5.7), (5.3.5.14), (5.3.5.17b),        
and (5.3.5.15), we get: b → d → e → a → h → i → c is a path from 
alternative b to alternative c with a strength of more than (N[f,g],N[g,f]).   
But this is a contradiction to the presumption that fg is the weakest link in   
the strongest path from alternative b to alternative c. 

Similarly, with (5.3.5.12), (5.3.5.17b), (5.3.5.13), (5.3.5.4), (5.3.5.16b), 
and (5.3.5.5), we get: c → h → i → a → d → e → b is a path from 
alternative c to alternative b with a strength of more than (N[f,g],N[g,f]).   
But this is a contradiction to the presumption that fg is the weakest link in 
the strongest path from alternative c to alternative b. 

Case 3: Suppose 

(5.3.5.16c) (N[h,i],N[i,h]) σ (N[d,e],N[e,d]). 

(5.3.5.17c) (N[h,i],N[i,h]) σ (N[f,g],N[g,f]). 

Then, with (5.3.5.10), (5.3.5.17c), (5.3.5.11), (5.3.5.6), (5.3.5.16c),      
and (5.3.5.7), we get: c → f → g → b → d → e → a is a path from   
alternative c to alternative a with a strength of more than (N[h,i],N[i,h]).   
But this is a contradiction to the presumption that hi is the weakest link in 
the strongest path from alternative c to alternative a. 

Similarly, with (5.3.5.4), (5.3.5.16c), (5.3.5.5), (5.3.5.8), (5.3.5.17c),   
and (5.3.5.9), we get: a → d → e → b → f → g → c is a path from 
alternative a to alternative c with a strength of more than (N[h,i],N[i,h]).   
But this is a contradiction to the presumption that hi is the weakest link in 
the strongest path from alternative a to alternative c. 
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With cases 1–3, we get that none of the links de, fg, hi can be weaker 
than the other two links. Without loss of generality, we can presume that the 
link hi is the strongest one of the links de, fg, hi. So we get 

(5.3.5.18) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

We can ignore the case (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) ≈σ (N[h,i], 
N[i,h]) because in this case the links de, fg, hi are the same link so that for 
each of (5.3.5.1) – (5.3.5.3) the same link is declared forbidden first so that, 
afterwards, each of (5.3.5.1) – (5.3.5.3) is still resolved based on the same 
set of non-forbidden links. 

So without loss of generality, we get 

(5.3.5.19) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

As there are no links of equivalent strengths, (5.3.5.19) means that the 
link de and the link fg must be the same link. Therefore, the strongest paths 
have the following structure: 

 
 
 

 
 

 

Without loss of generality, we can also say that, when we resolve 
(5.3.5.1) – (5.3.5.3), then, at each stage, the weakest of the weakest links of 
the current strongest paths is declared forbidden. So in our situation, the link 
de is declared forbidden next. 

  

a b c 

Pσ[a,d] 

Pσ[e,b] Pσ[c,d] 

Pσ[c,h] 

Pσ[i,c] Pσ[a,h] 

Pσ[i,a] 

(N[h,i],N[i,h])   h   i 

Pσ[e,c] 

Pσ[e,a] Pσ[b,d] 

(N[d,e],N[e,d])   e   d 
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Since (N[d,e],N[e,d]) σ (N[h,i],N[i,h]) ≈σ Pσ[c,a] ≈σ Pσ[a,c], the link de 
cannot be in the strongest path from alternative c to alternative a or in the 
strongest path from alternative a to alternative c. Therefore, declaring the 
link de forbidden cannot have an impact on the strongest path from 
alternative c to alternative a or on the strongest path from alternative a to 
alternative c. 

When the link de is declared forbidden, we get one of the following 
cases: 

Case A: We still get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. In this 
case, with the same argumentation as in cases 1–2 we get that the same link, 
say d’e’, is the weakest link in the strongest path from alternative a to 
alternative b, the weakest link in the strongest path from alternative b to 
alternative a, the weakest link in the strongest path from alternative b to 
alternative c, and the weakest link in the strongest path from alternative c to 
alternative b. So we can proceed with declaring the link d’e’ forbidden until 
we get one of the cases B–F. 

Case B: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.5.1) – 
(5.3.5.3) are still calculated based on the same set of non-forbidden links. 
With Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[c,a] σ Pσ[a,c]. But this is a 
contradiction to the fact that the link de cannot have been in the strongest 
path from alternative c to alternative a or in the strongest path from 
alternative a to alternative c, so that declaring the link de forbidden cannot 
have an impact on Pσ[c,a] ≈σ Pσ[a,c]. 

Case C: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.5.1) – 
(5.3.5.3) are still calculated based on the same set of non-forbidden links. 
With Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[c,a] σ Pσ[a,c]. But this is a 
contradiction to the fact that the link de cannot have been in the strongest 
path from alternative c to alternative a or in the strongest path from 
alternative a to alternative c, so that declaring the link de forbidden cannot 
have an impact on Pσ[c,a] ≈σ Pσ[a,c]. 
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Case D: We get ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] ) or ( Pσ[a,b] 
σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] ) or ( Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ 
Pσ[c,b] ) or ( Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ). This case is not 
possible because we have seen in (5.3.4.13a) – (5.3.4.13c) that, when we 
have a situation with Pσ[x,y] ≈σ Pσ[y,x], Pσ[y,z] ≈σ Pσ[z,y], and Pσ[z,x] σ 
Pσ[x,z], then the weakest link in the strongest path from alternative x to 
alternative y, the weakest link in the strongest path from alternative y to 
alternative x, the weakest link in the strongest path from alternative y to 
alternative z, and the weakest link in the strongest path from alternative z to 
alternative y must be the same link. But this is not possible because 
(5.3.5.19) says that the link hi is stronger than the link de. 

Case E: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 
identical to the situation in section 5.3.2. It is possible that Pσ[c,a] ≈σ Pσ[a,c] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,c] ≈σ Pσ[c,a] is 
resolved to Pσ[a,c] σ Pσ[c,a] or to Pσ[a,c] σ Pσ[c,a]  transitivity will 
never be violated. 

 
Case F: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 

identical to the situation in section 5.3.3. It is possible that Pσ[c,a] ≈σ Pσ[a,c] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,c] ≈σ Pσ[c,a] is 
resolved to Pσ[a,c] σ Pσ[c,a] or to Pσ[a,c] σ Pσ[c,a]  transitivity will 
never be violated. 

The following table shows that cases A–F cover all possible 
combinations. Therefore, it has been proven for every possible situation that, 
when we resolve (5.3.5.1) – (5.3.5.3) as prescribed in section 5.1, then 
transitivity will never be violated. 

 
Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case A 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case F 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case E 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case C 
           □ 
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5.4. Analysis 
 
An election method is simply a mapping from some input to some output. 

In section 2.1, we presumed that the output is (1) a strict partial order  on A 
and (2) a set ∅ ≠  ⊆ A of potential winners. In the probabilistic framework, 
the output of an election method is a probability distribution [] ∈  on 
A, where A is the set of linear orders on A. 

 
We get 
 
(5.4.1) ∀  ∈ A: [] ≥ 0. 
 
(5.4.2) ∑ ( [] |  ∈ A ) = 1. 
 
Suppose [a,b] ∈  is the probability for ab ∈  ( i.e. the probability that 

alternative a ∈ A is ranked ahead of alternative b ∈ A \ {a} in the collective 
ranking  ). 

 
Then, we get 
 
(5.4.3) [a,b] : = ∑ ( [] |  ∈ A with ab ∈  ). 
 
(5.4.4) ∀ a,b ∈ A: [a,b] ≥ 0. 
 
(5.4.5) ∀ a,b ∈ A: [a,b] + [b,a] = 1. 
 
Suppose [a] ∈  is the probability that alternative a ∈ A is elected. 
 
Then, we get 
 
(5.4.6) [a] : = ∑ ( [] |  ∈ A with ab ∈  for all b ∈ A \ {a} ). 
 
(5.4.7) ∀ a ∈ A: [a] ≥ 0. 
 
(5.4.8) ∑ ( [a] | a ∈ A ) = 1. 
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Resolvability 

Definition: 

An election method satisfies the resolvability criterion if ( for every given 
number of alternatives ) the proportion of profiles without a unique linear 
order ( i.e. without a linear order  ∈ A with [] = 1 ) tends to zero as 
the number of voters in the profile tends to infinity. 

Claim: 

If D satisfies (2.1.1), then the Schulze method final(σ), as defined in 
sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies the 
resolvability criterion. 

Proof (overview): 

1. Suppose the number of alternatives is fixed. We prove that, when the 
number of voters in the profile tends to infinity, the probability, that 
there are links with equivalent strengths, goes to zero. So the 
probability, that there are links ef and gh with ef ≈σ gh, goes to zero. 

2. We prove that (1) the link ij cannot be in the strongest path from 
alternative j to alternative i and (2) the link ji cannot be in the strongest 
path from alternative i to alternative j. Therefore, when we resolve the 
tie Pσ[i,j] ≈σ Pσ[j,i], it can neither happen that the link ij is declared 
forbidden nor that the link ji is declared forbidden. Therefore, in worst 
case, when there are no other paths of non-forbidden links anymore, 
Pσ[i,j] ≈σ Pσ[j,i] is resolved to ij ∈  when ij σ ji and to ji ∈  when 
ij σ ji. So the algorithm in section 5.1 always terminates before all 
links have been declared forbidden. 

Remark: 

When there is a unique linear order ( i.e. a linear order  ∈ A with 
[] = 1 ) then, with (5.4.6), we get that there is also a unique winner ( i.e. 
an alternative a ∈ A with [a] = 1 ): 

( ∃  ∈ A: [] = 1 ) ⇒ ( ∃ a ∈ A: [a] = 1 ). 
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Pareto 

In the probabilistic framework, the Pareto criterion says that, when no 
voter strictly prefers alternative b ∈ A to alternative a ∈ A [see (5.4.9)] and 
at least one voter strictly prefers alternative a to alternative b [see (5.4.10)], 
then [b] = 0. 

 
Definition: 
 

An election method satisfies the Pareto criterion if the following holds: 
 

Suppose: 
 
(5.4.9) ∀ v ∈ V: a v b. 
 
(5.4.10) ∃ v ∈ V: a v b. 

 
Then: 

 
(5.4.11) [a,b] = 1. 
 
(5.4.12) [b] = 0. 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method final(σ), as defined in 

sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies the Pareto 
criterion. 

 
Proof (overview): 

 
We prove 

(5.4.13) a μ b     with certainty. 

With (4.3.2.8), (5.2.1), (5.2.6a), and (5.2.6b), we prove 

(5.4.14) ∀ e ∈ A \ {a,b}: ae σ be    with certainty. 
 
With (4.3.2.9), (5.2.1), (5.2.5a), and (5.2.5b), we prove 

(5.4.15) ∀ e ∈ A \ {a,b}: eb σ ea    with certainty. 
 

With (2.1.1), (5.2.1), (5.4.9), and (5.4.10), we prove 
 
(5.4.16) ab σ ba     with certainty. 
 
With (5.4.14), (5.4.15), and (5.4.16), we prove 
 
(5.4.17) ab ∈      with certainty. 
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Reversal Symmetry 

In the probabilistic framework, reversal symmetry says that, when v is 
reversed for all v ∈ V, then old[a] + new[a] ≤ 1 for all a ∈ A. Otherwise, if 
old[a] + new[a] was larger than 1 for some alternative a ∈ A, then this would 
mean that, with a probability of at least old[a] + new[a] – 1 > 0, alternative a 
is identified as best alternative and, simultaneously, identified as worst 
alternative. 

 
Suppose reverse ∈ A is the reversal of  ∈ A. 
 
That means: 
 
(5.4.18) ∀ a,b ∈ A: ab ∈  ⇔ ba ∈ reverse. 
 

Definition: 
 
An election method satisfies reversal symmetry if the following holds: 

 
Suppose: 
 

(5.4.19) ∀ e,f ∈ A ∀ v ∈ V: e  v
old  f ⇔ f  v

new  e. 
 

Then: 
 

(5.4.20) ∀  ∈ A: old[] = new[reverse]. 
 
(5.4.21) ∀ a,b ∈ A: old[a,b] = new[b,a]. 
 
(5.4.22) ∀ a ∈ A: old[a] + new[a] ≤ 1. 

 
Claim: 

 
Suppose D satisfies (2.1.2). Suppose, for every (i,j),(m,n) ∈ A × A, there 

is at least one voter v ∈ V with (5.2.1). Then the Schulze method final(σ), as 
defined in sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies 
reversal symmetry. 

 
Proof (overview): 

 
Suppose, for every (i,j),(m,n) ∈ A × A, there is at least one voter v ∈ V 

with (5.2.1). Then the TBRL σ, as determined in step 1 of section 5.2, is 
already linear. 

 
Furthermore, (2.1.2) guarantees that, when v is reversed for all v ∈ V, 

also the TBRL σ, as determined in step 1 of section 5.2, is reversed. 
 
So the probability that  is chosen in the original situation is identical to 

the probability that reverse is chosen in the reversed situation. As we have 
presumed in section 2.1 that there are at least 2 alternatives in A, a ∈ A 
cannot be the maximum element of  and simultaneously the maximum 
element of reverse. Therefore, we get (5.4.22). 
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Monotonicity 

In the probabilistic framework, monotonicity says that, when some voters 
rank alternative a ∈ A higher [see (4.5.1) and (4.5.2)] without changing the 
order in which they rank the other alternatives relatively to each other [see 
(4.5.3)], then [a] must not decrease. 

 
Definition: 
 

An election method satisfies monotonicity if the following holds: 
 

Suppose a ∈ A. Suppose the ballots are modified as described in 
(4.5.1) – (4.5.3). Then 
 

(5.4.23) ∀ ∅ ≠ B ⊆ A \ {a}: 
 
 ∑ ( old[] |  ∈ A with ab ∈  for all b ∈ B ) 
 
 ≤ ∑ ( new[] |  ∈ A with ab ∈  for all b ∈ B ). 
 
(5.4.24) ∀ b ∈ A \ {a}: old[a,b] ≤ new[a,b]. 
 
(5.4.25) old[a] ≤ new[a]. 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method final(σ), as defined         

in sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies 
monotonicity. 

 
Proof (overview): 

 
We prove, that when the ballots are modified as described in (4.5.1) – 

(4.5.3), then links af with f ∈ A \ {a} can only rise in the TBRL σ compared 
to other links eg with e ∈ A \ {a} and g ∈ A \ {e}. Links fa with f ∈ A \ {a} 
can only fall in the TBRL σ compared to other links eg with g ∈ A \ {a} and 
e ∈ A \ {g}. Links eg with e ∈ A \ {a} and g ∈ A \ {a,e} neither rise nor fall 
in the TBRL σ compared to other links ij with i ∈ A \ {a} and j ∈ A \ {a,i}. 

 
The rest of the proof is identical to the proof in section 4.5. 
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Independence of Clones 

Definition: 
 

An election method is independent of clones if the following holds: 
 
Suppose d ∈ Aold. Suppose Anew : = ( Aold ∪ K ) \ {d}. 
 
Suppose alternative d is replaced by the set of alternatives K in 
such a manner that (4.6.1) – (4.6.3) are satisfied. 
 
Then: 
 
(5.4.26) ∀ 1 ∈ (Aold \ {d}) ∀ B ⊆ Aold \ {d} ∀ g ∈ K: 
 
 old[] for  ∈ Aold with 

(1) 1 ⊂  and 
(2) ad ∈  for all a ∈ B and 
(3) db ∈  for all b ∉ B 

 
 = ∑ ( new[] |  ∈ Anew with 

(1) 1 ⊂  and 
(2) ag ∈  for all a ∈ B and 
(3) gb ∈  for all b ∉ B ). 

 
(5.4.27) ∀ a,b ∈ Aold \ {d}: old[a,b] = new[a,b]. 
 
(5.4.28) ∀ a ∈ Aold \ {d} ∀ g ∈ K: old[a,d] = new[a,g]. 

 
(5.4.29) ∀ a ∈ Aold \ {d}: 
 ( ( ( old[a] = 0 ) ∨ ( ∃ v ∈ V: a  v

old  d ) ) ⇒ ( old[a] = new[a] ) ). 
 

Remark: 

The presumption ( ( old[a] = 0 ) ∨ ( ∃ v ∈ V: a  v
old  d ) ) is needed to 

exclude situations where alternative a is chosen with positive probability        
( i.e.: old[a] > 0 ) and every voter is indifferent between alternative a and 
alternative d ( i.e.: a ≈ v

old  d for every v ∈ V ). In those situations, alternative a 
and alternative d are necessarily chosen with the same probability                   
( i.e.: old[a] = old[d] ). When alternative d is replaced by a set K of more than 
one alternative in such a manner that (4.6.1) – (4.6.3) are satisfied then, again, 
every alternative in ( K ∪ {a} ) is necessarily chosen with the same 
probability ( i.e.: new[a] = new[g] for every g ∈ K ), so that the probability, 
that alternative a is chosen, necessarily drops ( i.e.: old[a] > new[a] ). 

Claim: 

The Schulze method final(σ), as defined in sections 5.1, with the TBRL 
σ, as defined in section 5.2, is independent of clones. 
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Proof (overview): 
 
We prove that all the alternatives g ∈ K are ranked in a consecutive 

manner in the TBRC μ. We then prove that, for every a ∈ Aold \ {d},  
all the links ag with g ∈ K are ranked in a consecutive manner in the  
TBRL σ. We further prove that, for every a ∈ Aold \ {d}, all the links ga 
with g ∈ K are ranked in a consecutive manner in the TBRL σ. 

The rest of the proof is identical to the proof in section 4.6. 
 

Smith 

Definition: 

An election method satisfies Smith if the following holds: 
 
Suppose (4.7.1) and (4.7.2). 
 
Then we get: 
 
(5.4.30) ∀ a ∈ B1 ∀ b ∈ B2: [a,b] = 1. 
 
(5.4.31) ∑ ( [a] | a ∈ B1 ) = 1. 

 
An election method satisfies Smith-IIA if the following holds: 

 
Suppose (4.7.1) and (4.7.2). 
 
Suppose d ∈ B2 is removed. Then we get: 
 
(5.4.32) ∀ 1 ∈ B1

: 
 ∑ ( old[] |  ∈ A with 1 ⊂  ) = 

∑ ( new[] |  ∈ (A \ {d}) with 1 ⊂  ). 
 
(5.4.33) ∀ a,b ∈ B1: old[a,b] = new[a,b]. 
 
(5.4.34)  ∀ a ∈ B1: old[a] = new[a]. 
 
Suppose d ∈ B1 is removed. Then we get: 
 
(5.4.35) ∀ 1 ∈ B2

: 
 ∑ ( old[] |  ∈ A with 1 ⊂  ) = 

∑ ( new[] |  ∈ (A \ {d}) with 1 ⊂  ). 
 
(5.4.36) ∀ a,b ∈ B2: old[a,b] = new[a,b]. 
 

Claim: 

If D satisfies (2.1.5), then the Schulze method final(σ), as defined in 
sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies Smith and 
Smith-IIA. 

Proof (overview): 
 
The proof is identical to the proofs in section 4.7. 
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Runtime 

The runtime to calculate the pairwise matrix is O(N∙(C^2)). 
 
The runtime to calculate the TBRL is O(N∙(C^4)) because, in worst case, 

O(N) ballots have to be picked and, each time, O(C^2) links are compared 
with O(C^2) other links, according to (5.2.1). 

 
The runtime to calculate a complete ranking, as defined in section 5.1, is 

O(C^7) because, in worst case, there are O(C^2) pairwise ties “Pσ[m,n] ≈σ 
Pσ[n,m]” (line 54). In worst case, O(C^2) links have to be declared forbidden 
to resolve a pairwise tie. Each time, the runtime of the Floyd algorithm to 
calculate the strength of the strongest path from every alternative to every 
other alternative is O(C^3). 

On closer examination, to resolve the pairwise tie “Pσ[m,n] ≈σ Pσ[n,m]”, it 
is not necessary to calculate the strength of the strongest path from every 
alternative to every other alternative. It is sufficient to calculate the strength 
of the strongest path from alternative m to alternative n and the strength of 
the strongest path from alternative n to alternative m. This can be done with 
the Dijkstra algorithm in a runtime O(C^2). 

Therefore, the runtime to calculate a complete ranking, as defined in 
section 5.1, reduces to O(C^6). 

 
Thus, the total runtime to calculate the binary relation , as defined in 

section 5, is O(N∙(C^4) + C^6). 
 

6. Definition of the Strength of a Pairwise Link 
 
6.1. Winning Votes 

 
There has been some debate about how to define D when it is presumed 

that on the one side each voter has a sincere linear order of the alternatives, 
but on the other side some voters cast only a strict weak order because of 
strategic considerations. We got to the conclusion that the strength (N[e,f], 
N[f,e]) of the pairwise link ef ∈ A × A should be measured by winning votes, 
i.e. primarily by the support N[e,f] of this link and secondarily by the 
opposition N[f,e] to this link. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] < N[h,g]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
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Suppose a,b ∈ A. Suppose R1[a] : = ║{ v ∈ V | ∀ c ∈ A \ {a}: a v c }║ 
is the number of voters who strictly prefer alternative a to every other 
alternative. Suppose R2[b] : = ║{ v ∈ V | ∃ c ∈ A \ {b}: b v c }║ is the 
number of voters who strictly prefer alternative b to at least one other 
alternative. Suppose R1[a] > R2[b]. Then Woodall’s plurality criterion says: 
b ∉ . Woodall (1997) writes: “If some candidate b has strictly fewer votes 
in total than some other candidate a has first-preference votes, then 
candidate b should not be elected.” 
 
Claim: 

 
If win is being used, then the Schulze method satisfies Woodall’s 

plurality criterion. 
 
Proof: 

 
Suppose 
 
(6.1.1) R1[a] > R2[b]. 
 
With (6.1.1) and the definition for win, we get 
 
(6.1.2) (R1[a],R2[b]) win (R2[b],0). 
 
With the definitions for R1[a] and R2[b], we get 
 
(6.1.3) N[a,b] ≥ R1[a]. 
 
(6.1.4) N[b,a] ≤ R2[b]. 
 
With (6.1.3), (6.1.4), and the definition for win, we get 
 
(6.1.5) (N[a,b],N[b,a]) win (R1[a],R2[b]). 
 
With the definition for R2[b], we get 
 
(6.1.6) ∀ c ∈ A \ {b}: N[b,c] ≤ R2[b]. 
 
With (6.1.6) and the definition for win, we get 
 
(6.1.7) ∀ c ∈ A \ {b}: (N[b,c],N[c,b]) win (R2[b],0). 
 
With (2.2.6) and (6.1.7), we get 
 
(6.1.8) Pwin[b,a] win (R2[b],0). 

 
With (2.2.3), (6.1.5), (6.1.2), and (6.1.8), we get 
 
(6.1.9) Pwin[a,b] win (N[a,b],N[b,a]) win (R1[a],R2[b]) 

win (R2[b],0) win Pwin[b,a] 
 
so that ab ∈ .         □ 
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6.2. Margins 
 
Reversal independence says that adding a ballot and its reverse should 

not change the result of the elections. In other words, a ballot and its reverse 
should always cancel each other out. 

 
Definition: 

 
Suppose w1 and w2 are strict weak orders with 
 
(6.2.1)  ∀ a,b ∈ A: a w1

 b ⇔ b w2
 a. 

 
Suppose Vnew : = Vold + {w1} + {w2}. 
 
Then, an election method satisfies reversal independence if the 
following holds: 
 
(6.2.2)  new = old. 
 
(6.2.3)  new = old. 
 

Claim: 
 
If margin is being used, then the Schulze method, as defined in section 

2.2, satisfies reversal independence. 
 

Proof: 
 
The proof is trivial. When w1 and w2 are added, then Nnew[a,b] – Nnew[b,a] 

= Nold[a,b] – Nold[b,a] for all a,b ∈ A. Therefore 
 
(6.2.4) ∀ (a,b),(g,h) ∈ A × A: 
 

( ( Nnew[e,f] – Nnew[f,e] > Nnew[g,h] – Nnew[h,g] ) 
 

⇔ ( Nold[e,f] – Nold[f,e] > Nold[g,h] – Nold[h,g] ) ). 
Therefore 
 
(6.2.5) ∀ (a,b),(g,h) ∈ A × A: 
 

(Nnew[e,f],Nnew[f,e]) margin (Nnew[g,h],Nnew[h,g]) 
 

⇔ (Nold[e,f],Nold[f,e]) margin (Nold[g,h],Nold[h,g]). 
 
With (2.2.2) and (6.2.5), we get (6.2.2) and (6.2.3).     □ 
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7. Supermajority Requirements 
 
When preferential ballots are being used in referendums, then sometimes 

alternatives have to fulfill some supermajority requirements to qualify. 
Typical supermajority requirements define some M1 ∈  or some 1 ≤ M2 ∈  
and say that N[a,b] must be strictly larger than max { N[b,a], M1 } or that 
N[a,b] must be strictly larger than M2∙N[b,a] to replace alternative b ∈ A by 
alternative a ∈ A. Or they say that N[a,b] must be strictly larger than N[b,a] 
not only in the electorate as a whole, but also in a majority of its geographic 
parts or even in each of its geographic parts. It is also possible that in the 
same referendum the voters have to choose between alternatives that have to 
fulfill different supermajority requirements to qualify. In this section, we 
discuss a possible way to combine the Schulze method with supermajority 
requirements. Suppose s ∈ A is the status quo. 

 
These are the two tasks of supermajority requirements: 
 

Task #1 (protecting the status quo): 
 

Supermajority requirements protect the status quo from 
accidental majorities. They make it more difficult to replace the 
status quo s by alternative a ∈ A \ {s}. Therefore, an important 
property of all supermajority requirements is that, when s had 
won in the absence of these requirements, then it also wins in 
the presence of these requirements. 

 
Task #2 (preventing the status quo from cycling): 
 

Supermajority requirements prevent the status quo from 
cycling. Suppose s(0) is the starting status quo. Suppose s(k+1) 
is the new status quo when the method is applied to the same set 
of alternatives A, to the same set of ballots V, and to the status 
quo s(k). Then we would expect that ( for every possible set of 
alternatives A, for every possible set of ballots V, and for every 
possible starting status quo s(0) ∈ A ) there is an m < C such 
that s(k) ≡ s(m) for all k ≥ m. 
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We recommend the following method: 

The Schulze relation , as defined in section 2.2, is calculated. 
 
A Tie-Breaking Ranking of the Links (TBRL), a linear order σ 
on A × A, and a Tie-Breaking Ranking of the Candidates 
(TBRC), a linear order μ on A, are calculated as described in 
section 5.2 variant 1. 
 
The final Schulze relation final(σ), as defined in section 5.1, is 
calculated. 
 
Alternative a ∈ A \ {s} is attainable if and only if N[a,s] > N[s,a] 
and (a) there is no supermajority requirement to replace the status 
quo s by alternative a or (b) alternative a has the supermajority 
required to replace the status quo s by alternative a. 
 
Alternative a ∈ A is eligible if and only if ( a ≡ s ) or ( ( a is 
attainable ) and ( as ∈  ) ). 
 
A winner is an alternative a ∈ A with (1) alternative a is eligible 
and (2) ab ∈ final(σ) for every other eligible alternative b. 

 
The condition “as ∈ ” in the definition of eligibility implies that 

alternative a can win only if it had disqualified the status quo s in the 
absence of supermajority requirements. This guarantees that, if s had won in 
the absence of supermajority requirements, then s also wins in the presence 
of these supermajority requirements. 

 
In the above suggestion, the status quo s can only be replaced by an 

alternative a with as ∈ . As  is transitive, it is guaranteed that the status 
quo cannot be changed in a cyclic manner. 
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8. Electoral College 

There has been some debate about how to combine the Schulze method 
with the Electoral College for the elections of the President of the USA. In 
my opinion, the Electoral College serves two important purposes: 

Purpose #1: The Electoral College gives more power to the smaller 
states. 

The Senate, where each state has the same voting power 
regardless of its population, is more powerful than the House of 
Representatives, where each state has a voting power in 
proportion of its population. This is true especially for decisions 
that are close to the executive. For example, the President needs 
the consent of the Senate for treaties and for the appointment of 
officers and judges. Because of this reason, it is more important 
that the President has a reliable support in the Senate than that 
he has a reliable support in the House of Representatives. 

Purpose #2: The Electoral College makes it possible to count the 
ballots on the state levels and then to add up the electoral votes. 

The Electoral College makes it possible that, to guarantee 
that all voters are treated in an equal manner, it is only 
necessary to guarantee that all voters in the same state are 
treated in an equal manner. However, if the ballots were added 
up on the national level, it would be necessary to guarantee that 
all voters all over the USA are treated in an equal manner. In the 
latter case, many provisions (e.g. the rules to gain suffrage or   
to be excluded from suffrage, the ballot access rules, the rules 
for postal voting, the opening hours of the polling places) would 
have to be harmonized all over the USA, leading to a very 
powerful central election authority. 

This property is desirable especially for the elections to the 
National Conventions for the nominations of the presidential 
candidates. Here, the election rules and the set of candidates 
differ significantly from state to state. 

To combine the Schulze method with the Electoral College without 
losing any of its purposes, we recommend that, for each pair of candidates a 
and b separately, we should determine, how many electoral votes Nelectors[a,b] 
candidate a would get and how many electoral votes Nelectors[b,a] candidate b 
would get when only these two candidates were running. We then apply the 
Schulze method to the matrix Nelectors. 
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So we recommend the following method: 
 
Stage 1: 

Suppose AX ⊆ A is the set of candidates who are running in state X. 

For a,b ∈ AX: NX[a,b] ∈ 0 is the number of voters in state X who 
strictly prefer candidate a to candidate b. 

Stage 2: 
Suppose y ∈  with y > 0. Then “smaller_or_equal(y)” is the     
largest integer that is smaller than or equal to y. In other words: 
“smaller_or_equal(y)” is that integer z ∈ 0 with z ≤ y < ( z + 1 ). 

Suppose y ∈  with y > 0. Then “strictly_smaller(y)” is the        
largest integer that is strictly smaller than y. In other words: 
“strictly_smaller(y)” is that integer z ∈ 0 with z < y ≤ ( z + 1 ). 

Suppose EX ∈  is the number of electors of state X. 

Suppose: 

(a) FX[a,b] : = EX,                                                                                   

if { a ∈ AX and b ∉ AX } or { a,b ∈ AX and NX[a,b] > NX[b,a] = 0 }. 

(b) FX[a,b] : = 0,                                                                                     

if { a ∉ AX and b ∈ AX } or { a,b ∈ AX and NX[b,a] > NX[a,b] = 0 }. 

(c) FX[a,b] : = EX / 2,                                                                               

if { a,b ∉ AX } or { a,b ∈ AX and NX[a,b] = NX[b,a] }. 

(d) FX[a,b] : = 0.01 · smaller_or_equal (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅

),        

if a,b ∈ AX and NX[a,b] > NX[b,a] > 0. 

(e) FX[a,b] : = 0.01 · strictly_smaller (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅

),          

if a,b ∈ AX and NX[b,a] > NX[a,b] > 0. 

Nelectors[a,b] : = ∑X FX[a,b]. 

Stage 3: 
The Schulze method, as defined in section 2.2, is applied to Nelectors. 

Suppose the Schulze method is used for presidential primaries. Suppose 
some candidate g withdraws and doesn’t take part in the remaining primaries. 
Then candidate g is not removed from the pairwise matrix. Rather he is 
treated as described at stage 2 (a) – (c). This regulation is necessary because 
removing a loser can still change the winner. 
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9. Comparison with other Methods 
 
Table 9.2 compares the Schulze method with its main contenders. 

Extensive descriptions of the different methods can be found in publications 
by Fishburn (1977), Nurmi (1987), Kopfermann (1991), Levin and Nalebuff 
(1995), and Tideman (2006). As most of these methods only generate a set  
of winners and don’t generate a binary relation , only that part of the 
different criteria is considered that refers to the set  of potential winners. 

 
In terms of satisfied and violated criteria, that election method, that 

comes closest to the Schulze method, is Tideman’s ranked pairs method 
(Tideman, 1987). The only difference is that the ranked pairs method doesn’t 
choose from the MinMax set BD. 

The ranked pairs method works from the strongest to the weakest link. 
The link xy is locked if and only if it doesn’t create a directed cycle with 
already locked links. Otherwise, this link is locked in its opposite direction. 

In example 1, the ranked pairs method locks db. Then it locks cb. Then it 
locks ac. Then it locks ab, since locking ba in its original direction would 
create a directed cycle with the already locked links ac and cb. Then it locks 
cd. Then it locks ad, since locking da in its original direction would create a 
directed cycle with the already locked links ac and cd. 

The winner of the ranked pairs method is alternative a ∉ BD = {d}, 
because there is no locked link that ends in alternative a. 

 
Although Tideman’s ranked pairs method is that election method that 

comes closest to the Schulze method in terms of satisfied and violated criteria, 
random simulations by Wright (2009) showed that that election method, that 
agrees the most frequently with the Schulze method, is the Simpson-Kramer 
method (table 9.1). 
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number of 
alternatives A B C 

3 100.0 % 100.0 % 100.0 % 
4 99.7 % 98.5 % 98.2 % 
5 99.2 % 96.0 % 95.3 % 
6 99.1 % 93.0 % 92.3 % 
7 98.9 % 90.0 % 89.1 % 

 
Table 9.1: Simulations by Wright (2009) 

A: Probability that the Schulze method conforms with the 
Simpson-Kramer method 

B: Probability that the Schulze method conforms with the 
ranked pairs method 

C: Probability that the ranked pairs method conforms with 
the Simpson-Kramer method 
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Baldwin Y Y N N N Y N Y Y Y Y Y N N N Y 
Black Y Y Y Y N N N Y Y N Y Y N N N Y 
Borda Y Y Y Y N N N N Y N N Y Y N N Y 
Bucklin Y Y N Y N N N N N Y Y Y N N N Y 
Copeland N Y Y Y N Y Y Y Y Y Y Y N N N Y 
Dodgson Y Y N N N N N Y N N Y N N N N N 
instant runoff Y Y N N Y N N N Y Y Y Y N N N Y 
Kemeny-Young Y Y Y Y N Y Y Y Y Y Y Y N N N N 
Nanson Y Y Y N N Y N Y Y Y Y Y N N N Y 
plurality Y Y N Y N N N N N N Y N Y N N Y 
ranked pairs Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y 
Schulze Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y 
Simpson-Kramer Y Y N Y N N N Y N N Y N N N Y Y 
Slater N Y Y Y N Y Y Y Y Y Y Y N N N N 
Young Y Y N Y N N N Y N N Y N N N N N 
 
Table 9.2: Comparison of Election Methods 
 
“Y” = compliance 
“N” = violation 
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10. Discussion 
 
Suppose ΛD(a) : = maxD { (N[b,a],N[a,b]) | b ∈ A \ {a} } is the Simpson-

Kramer score of alternative a ∈ A. Then the Simpson-Kramer method is 
defined as follows: 

 
(10.1)  a ∈ SK : ⇔ ΛD(a) D ΛD(b) for all b ∈ A \ {a}. 

 
Over a long period of time, this method was the most popular election 

method among Condorcet activists, because this method minimizes the 
number of overruled voters. However, a very serious problem of this method 
is that it is not independent of clones, because it can happen that, when 
alternative a ∈ A is replaced by a set of clones K as described in (4.6.1) – 
(4.6.3), then the alternatives of the set K disqualify each other in such a 
manner that for some alternative b ∈ A \ {a}: 

 
(10.2)  Λ old

D (a) D Λ
old
D (b) and Λ new

D (b) D Λ
new
D (g) ∀ g ∈ K. 

 
To make the Simpson-Kramer method clone-proof, the concept of 

Simpson-Kramer scores has to be generalized from individual alternatives    
a ∈ A to sets of alternatives ∅ ≠ B ⊊ A: 

 
(10.3)  ΓD(B) : = maxD { (N[b,a],N[a,b]) | b ∉ B, a ∈ B }. 

 
We get 
 
(10.4)  ∀ a ∈ A: ΛD(a) ≈D ΓD({a}). 

 
The ΓD scores are clone-proof because, when alternative a ∈ A is 

replaced by a set of clones K, then we get for all ∅ ≠ B ⊊ A: 
 
(10.5a) a ∈ B ⇒ Γ new

D ( ( B ∪ K ) \ {a} ) ≈D Γ old
D (B). 

(10.5b) a ∉ B ⇒ Γ new
D (B) ≈D Γ old

D (B). 
 

Suppose βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A } and BD : =  { ∅ ≠ B ⊊ A | 
ΓD(B) ≈D βD }. Then when we want primarily that the used election method 
is clone-proof and secondarily that it minimizes the number of overruled 
voters, then the maximum, that we can ask for, is 

 
(10.6)   ⊆ BD. 
 
In this paper, we propose a new single-winner election method (Schulze 

method) that is clone-proof (section 4.6) and that always chooses from the 
MinMax set BD (section 4.8). The latter property is the most characteristic 
property of the Schulze method, since this is the first time that an election 
method with this property is proposed. 

 
The Schulze method also satisfies many other criteria; some of them are 

also satisfied by the Simpson-Kramer method, like the Pareto criterion 
(section 4.3), resolvability (section 4.2), monotonicity (section 4.5), and 
prudence (section 4.9); some of them are violated by the Simpson-Kramer 
method, like the Smith criterion (section 4.7) and reversal symmetry (section 
4.4). Because of this large number of satisfied criteria, we consider the 
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Schulze method to be a promising alternative to the Simpson-Kramer 
method for actual implementations, especially when manipulation through 
clones or weak alternatives is an issue. 
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