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Symbols 
 
∧   ... and ... 
∨   ... or ... 
∀  ... for all ... 
∃   ... there is at least one ... 
∈   ... element of ... 
∉ ... not element of ... 
⇒ ... then ... 
⇔ ... then and only then ... 
   natural numbers without zero,  = {1, 2, 3, ...} 
0  natural numbers with zero, 0 = {0, 1, 2, 3, ...} 
   real numbers 
∅ the empty set 

 
1. Introduction 

 
One important property of a good single-winner election method is that it 

minimizes the number of “overruled” voters (according to some heuristic). 
Because of this reason, the Simpson-Kramer method, that always chooses 
that alternative whose worst pairwise defeat is the weakest, was very popular 
over a long time. However, in recent years, the Simpson-Kramer method has 
been criticized by many social choice theorists. Smith (1973) criticizes that 
this method doesn’t choose from the top-set of alternatives. Tideman (1987) 
complains that this method is vulnerable to the strategic nomination of a 
large number of similar alternatives, so-called clones. And Saari (1994) 
rejects this method for violating reversal symmetry. A violation of reversal 
symmetry can lead to strange situations where still the same alternative is 
chosen when all ballots are reversed, meaning that the same alternative is 
identified as best one and simultaneously as worst one. 

 
In this paper, we will show that only a slight modification (section 4.8) of 

the Simpson-Kramer method is needed so that the resulting method satisfies 
the criteria proposed by Smith (section 4.7), Tideman (section 4.6), and Saari 
(section 4.4). The resulting method will be called Schulze method. Random 
simulations by Wright (2009) confirmed that, in almost 99% of all instances, 
the Schulze method conforms with the Simpson-Kramer method (table 11.1). 
In this paper, we will prove that, nevertheless, the Schulze method still 
satisfies all important criteria that are also satisfied by the Simpson-Kramer 
method, like resolvability (section 4.2), Pareto (section 4.3), monotonicity 
(section 4.5), and prudence (section 4.9). Because of these reasons, already 
several private organizations have adopted the Schulze method. 

 
1997 – 2006: In 1997, I proposed the Schulze method to a large number of 

people, who are interested in mathematical aspects of election 
methods. This method was discussed for the first time in a public 
mailing list between June 1998 and November 1998 (e.g. Ossipoff, 
1998; Petry, 1998; Schulze, 1998), when it was discussed at the 
Election-Methods mailing list. In June 2003, the Debian project, a 
software developer organization with about 1,000 eligible members, 
adopted this method in a referendum with 144 against 16 votes; 
Debian GNU/Linux is the largest and most popular non-commercial 
Linux distribution. In May 2005, the Gentoo Foundation, a software 
developer organization with about 100 eligible members, adopted this 
method; Gentoo Linux is another wide-spread Linux distribution. 
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2007 – 2011: In 2008, 2009, and 2011, the Wikimedia Foundation, a non-
profit charitable organization with about 43,000 eligible members    
(in 2011), used the proposed method for the election of its Board of 
Trustees; the Wikimedia Foundation is the umbrella organization    
e.g. for Wikipedia, Wiktionary, Wikiquote, Wikidata, Wikibooks, 
Wikisource, Wikinews, Wikivoyage, Wikiversity, and Wikispecies;   
it is, therefore, the fifth most important Internet corporation (after 
Alphabet/Google/YouTube, Facebook/WhatsApp, Yahoo!, and 
Baidu). In June 2008, the “Free Software Foundation Europe” (FSFE), 
a software project with about 1,500 eligible members, adopted this 
method. In July 2008, Ubuntu, a software developer organization with 
about 700 eligible members, adopted this method. In August 2008,  
“K Desktop Environment” (KDE), a software developer organization 
with about 200 eligible members, adopted this method. In October 
2009, the “Pirate Party of Sweden” (about 3,000 eligible members) 
adopted this method. In May 2010, the “Pirate Party of Germany” 
(about 11,000 eligible members) adopted this method. In November 
2010, OpenStack, a software project with about 3,000 eligible 
members, adopted this method. Since February 2011, the “Pirate Party 
of Austria” (about 300 eligible members) uses this method. Since 
November 2011, the “Pirate Party of Australia” (about 1,300 eligible 
members) uses this method. 

 
2012 – 2017: Since January 2013, the “Pirate Party of Iceland” (about 4,000 

eligible members) uses this method. Since April 2013, the associated 
student government at Northwestern University (about 20,000 eligible 
members) uses this method. Since October 2013, the “German 
Association of Pediatricians” (“Berufsverband der Kinder- und 
Jugendärzte”; BVKJ; about 12,000 eligible members) uses this 
method. Since October 2013, the “Five Star Movement” (“Movimento 
5 Stelle”, M5S), a political party in Italy with about 140,000 eligible 
members, uses this method. Since May 2014, the associated student 
government at Albert Ludwig University of Freiburg (about 25,000 
eligible members) uses this method. Since January 2015, the “Pirate 
Party of the Netherlands” (about 1,400 eligible members) uses this 
method. In February 2016, the city of Silla (about 19,000 inhabitants) 
in Spain adopted the Schulze method for referendums (www01 – 
www05). In July 2016, the “European Students’ Forum” (“Association 
des états généraux des étudiants de l’Europe”, AEGEE), a student 
organization with about 13,000 eligible members, adopted this method. 
Since January 2017, Podemos, a political party in Spain with about 
500,000 eligible members, uses this method. In March 2017, the 
“Internet Corporation for Assigned Names and Numbers” (ICANN) 
adopted the Schulze method for the election of its board and the board 
of the “Address Supporting Organization” (ASO), a supporting 
organization affiliated with ICANN. 

 
Today (December 2017), the proposed method is used by more than 60 

organizations with more than 700,000 eligible members in total. Therefore, 
the proposed method is more wide-spread than all other Condorcet-
consistent single-winner election methods combined. Hill (2008) even claims 
that MTV uses this method to decide which music videos go into rotation. 
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Furthermore, the proposed method is used by many Internet decision 
support systems, like the “Condorcet Internet Voting Service” (CIVS), 
GoogleVotes (Hardt and Lopes, 2015), LiquidFeedback (Behrens, 2014), 
Selectricity (Hill, 2008), Airesis, preftools, OpenAgora, and OpenSTV. 

 
There has been some debate about an appropriate name for this method. 

Some people suggested names like “beatpath(s)”, “beatpath method”, 
“beatpath winner”, “beatpath matrix”, “beatpath tournament matrix”, 
“beatpath power ranking” (BeatPower), “path method”, “path voting”, “path 
winner”, “path matrix”, “Schwartz sequential dropping” (SSD), “cloneproof 
Schwartz sequential dropping” (CSSD), and “MinMax decision function”. 
Brearley (1999) suggested names like “descending minimum gross score” 
(DminGS), “descending minimum augmented gross score” (DminAGS),  
and “descending minimum doubly augmented gross score” (DminDAGS), 
depending on how the strength of a pairwise link is measured. Heitzig (2001) 
suggested names like “strong immunity from binary arguments” (SImA) and 
“sequential dropping towards a spanning tree” (SDST). However, I prefer 
the name “Schulze method”, not because of academic arrogance, but because 
the other names do not refer to the method itself but to specific heuristics for 
implementing it, and so may mislead readers into believing that no other 
method for implementing it is possible. 

 
In section 2 of this paper, the Schulze method is defined. In section 3,  

this method is applied to concrete examples. In section 4, this method           
is analyzed. Detailed descriptions of this method can also be found in 
publications by Schulze (2003, 2011), Tideman (2006, pages 228–232), 
Stahl and Johnson (2006, 2017), McCaffrey (2008a, 2008b), Börgers (2009, 
pages 37–42), Camps (2012a, 2012b, 2013, 2014a, 2014b, 2014c), Behrens 
(2014), D. Müller (2014, 2015), Moses (2017), and Pattinson (2017). This 
method is also described and discussed in papers by Green-Armytage 
(2004), Taylor (2004), Meskanen and Nurmi (2006a, 2006b, 2008), Yue 
(2007), Nebel (2009), Wright (2009), Rivest and Shen (2010), Abisheva 
(2012), Bucovetsky (2012), Gaspers (2012), Grünheid (2012, 2015, 2016), 
Negriu (2012), Parkes and Xia (2012), Happes (2013), Menton (2013a, 
2013b), J. Müller (2013), Parkes and Seuken (2013), Felsenthal and 
Tideman (2014), Li (2014), Mattei (2014), Reisch (2014), Schend (2015), 
Baumeister and Rothe (2016), Bubboloni and Gori (2016), Caragiannis 
(2016), Contucci (2016), Darlington (2016), Diethelm (2016), Fischer 
(2016), Hemaspaandra (2016), Pan (2016), Ruiz-Padillo (2016), Shah 
(2016), Aziz (2017), Becirovic (2017), Hazra (2017), Hoang (2017), Izetta 
(2017), Louridas (2017), Pérez-Fernández (2017a, 2017b), Sekar (2017), 
Skowron (2017), and Tozer (2017). Applications of the Schulze method are 
described in papers by Narizzano (2006a, 2006b, 2006c, 2007), Ghersi 
(2007), Callison-Burch (2009), Arguello (2011a, 2011b, 2011c, 2017), 
Audhkhasi (2011), Gelder (2011), Maheswari (2012), Muldoon (2012), 
Oryńczak (2012), Prati (2012), Bohne (2013, 2015), Zhou (2013, 2014), 
Akbib (2014a, 2014b), Garg (2014), Lawonn (2014), Pallett (2014), Wang 
(2014), Baer (2015), Bountris (2015), Degeest (2015), Evita (2015), Nguyen 
(2015), Plösch (2015), Proag (2015), Aswatha (2016), Cai (2016), Chen 
(2016), Mangeli (2016), Vargas (2016), Verdiesen (2016), Xexéo (2016), 
Goel (2017), Işıklı (2017), Moal (2017), and Rijnsburger (2017). Cases, 
where the Schulze method is used to evaluate empirical data, are mentioned 
by Morales (2008), Wimmer (2009, 2010), Kowalski (2013), Casadebaig 
(2014), Vaughan (2016), Gervits (2017), and Al-Rousan (2017). 
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2. Definition of the Schulze Method 
 
2.1. Preliminaries 
 

We presume that A is a finite and non-empty set of alternatives. C ∈  
with 1 < C < ∞ is the number of alternatives in A. 

 
A binary relation  on A is asymmetric if it has the following property: 
 

∀ a,b ∈ A, exactly one of the following three statements is valid: 
 

1. a  b. 
2. b  a. 
3. a ≈ b (where “a ≈ b” means “neither a  b nor b  a”). 
 

A binary relation  on A is irreflexive if it has the following property: 
 

∀ a ∈ A: a ≈ a. 
 

A binary relation  on A is transitive if it has the following property: 
 

∀ a,b,c ∈ A: ( ( a  b and b  c ) ⇒ a  c ). 
 
A binary relation  on A is negatively transitive if it has the following 

property (where “a  b” means “not b  a”): 
 

∀ a,b,c ∈ A: ( ( a  b and b  c ) ⇒ a  c ). 
 
A binary relation  on A is linear (or total or complete) if it has the 

following property: 
 

∀ a,b ∈ A: ( b ∈ A \ {a} ⇒ ( a  b or b  a ) ). 
 
A strict partial order is an asymmetric, irreflexive, and transitive 

relation. A strict weak order is a strict partial order that is also negatively 
transitive. A linear order (or total order or complete order) is a strict weak 
order that is also linear. A profile is a finite and non-empty list of strict weak 
orders each on A. 

 
Input of the proposed method is a profile V. N ∈  with 0 < N < ∞ is the 

number of strict weak orders in V : = { 1, ..., N }. These strict weak orders 
will sometimes be called “voters” or “ballots”. 

 
Suppose V1 : = { 1, ..., N1 } and V2 : = { 1’, ..., N2’ } are two profiles 

each on the same set of alternatives A. Then the concatenation of these two 
profiles will be denoted V1 + V2 : = { 1, ..., N1 , 1’, ..., N2’ }. 

 
“a v b” means “voter v ∈ V strictly prefers alternative a ∈ A to 

alternative b”. “a ≈v b” means “voter v ∈ V is indifferent between alternative 
a and alternative b”. “a v b” means “a v b or a ≈v b”. 

 
Output of the proposed method is (1) a strict partial order  on A and    

(2) a set ∅ ≠  ⊆ A of potential winners. 
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A possible implementation of the Schulze method looks as follows: 
 

Each voter gets a complete list of all alternatives and ranks these 
alternatives in order of preference. The individual voter may give    
the same preference to more than one alternative and he may keep 
alternatives unranked. When a given voter does not rank all 
alternatives, then this means (1) that this voter strictly prefers all 
ranked alternatives to all not ranked alternatives and (2) that this voter 
is indifferent between all not ranked alternatives. The individual voter 
may also skip preferences; however, skipping preferences has no 
impact on the result of the elections since only the cast order of the 
preferences matters, not the absolute numbers. 

 
Suppose N[e,f] : = ║{ v ∈ V | e v f }║ is the number of voters who 

strictly prefer alternative e to alternative f. We presume that the strength of 
the link ef depends only on N[e,f] and N[f,e]. Therefore, the strength of the 
link ef can be denoted (N[e,f],N[f,e]). We presume that a binary relation D 
on 0 × 0 is defined such that the link ef is stronger than the link gh if and 
only if (N[e,f],N[f,e]) D (N[g,h],N[h,g]). N[e,f] is the support for the link ef; 
N[f,e] is its opposition. 
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Example 1 (margin): 
 

When the strength of the link ef is measured by margin, then its 
strength is the difference N[e,f] – N[f,e] between its support N[e,f] and 
its opposition N[f,e]. 

 
(N[e,f],N[f,e]) margin (N[g,h],N[h,g]) if and 
only if N[e,f] – N[f,e] > N[g,h] – N[h,g]. 
 

Example 2 (ratio): 
 

When the strength of the link ef is measured by ratio, then its strength is 
the ratio N[e,f] / N[f,e] between its support N[e,f] and its opposition N[f,e]. 

 
(N[e,f],N[f,e]) ratio (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] ∙ N[h,g] > N[f,e] ∙ N[g,h]. 
4. N[e,f] > N[g,h] and N[f,e] ≤ N[h,g]. 
5. N[e,f] ≥ N[g,h] and N[f,e] < N[h,g]. 

 
Example 3 (winning votes): 
 

When the strength of the link ef is measured by winning votes, then its 
strength is measured primarily by its support N[e,f]. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] < N[h,g]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
 

Example 4 (losing votes): 
 

When the strength of the link ef is measured by losing votes, then its 
strength is measured primarily by its opposition N[f,e]. 

 
(N[e,f],N[f,e]) los (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 

 
1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] < N[h,g]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] > N[g,h]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
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The most intuitive definitions for the strength of a link are its margin and 
its ratio. However, we only presume that D is a strict weak order on 0 × 0. 

 
For some proofs, we have to make additional presumptions for D. We 

will state explicitly when and where we take use of additional presumptions. 
Typical additional presumptions for D are: 

 
 

(2.1.1) (positive responsiveness) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
( ( x1 > y1 ∧ x2 ≤ y2 ) ∨ ( x1 ≥ y1 ∧ x2 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 

 
 

(2.1.2) (reversal symmetry) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
(x1,x2) D (y1,y2) ⇒ (y2,y1) D (x2,x1). 
 
 

(2.1.3) (homogeneity) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0 ∀ c1,c2 ∈ : 
(c1·x1,c1·x2) D (c1·y1,c1·y2) ⇒ (c2·x1,c2·x2) D (c2·y1,c2·y2). 

 
 
The presumption, that the strength of the link ef depends only on N[e,f] 

and N[f,e], guarantees (1) that the proposed method satisfies anonymity and 
neutrality, (2) that adding a ballot, on which all alternatives are ranked 
equally, cannot change the result of the elections, and (3) that the proposed 
method is a C2 Condorcet social choice function (CSCF) according to 
Fishburn’s (1977) terminology. 

 
Presumption (2.1.1) says that, when the support of a link increases and its 

opposition doesn’t increase or when its opposition decreases and its support 
doesn’t decrease, then the strength of this link increases. So presumption 
(2.1.1) says that the strength of a link responds to a change of its support or 
its opposition in the correct manner. Presumption (2.1.1) guarantees that the 
proposed method satisfies resolvability (section 4.2), Pareto (section 4.3), and 
monotonicity (section 4.5). When each voter v ∈ V casts a linear order v on 
A, then all definitions for D, that satisfy presumption (2.1.1), are identical. 

 
Presumption (2.1.2) says that, the stronger the link (x1,x2) gets, the weaker 

the opposite link (x2,x1) gets. Presumption (2.1.2) basically says that, when 
the individual ballots v are reversed for all voters v ∈ V, then also the order 
of the links (x1,x2) D (y1,y2) is reversed. 

 
Homogeneity means that the result depends only on the proportion of 

ballots of each type, not on their absolute numbers. Presumption (2.1.3) 
guarantees that the proposed method satisfies homogeneity. 

 
margin, ratio, win, and los each satisfy (2.1.1) – (2.1.3). 

  



Markus Schulze, “The Schulze Method of Voting” 

 11 

Corollary (2.1.4): 

If D satisfies presumption (2.1.2), then all ties have equivalent strengths. 
In short: 

(2.1.4) ∀ x,y ∈ 0: (x,x) ≈D (y,y). 

Proof of corollary (2.1.4): 

Suppose (x,x) D (y,y) for some x,y ∈ 0. Then with (2.1.2), we get     
(y,y) D (x,x). But this is a contradiction to the presumption (x,x) D (y,y) and 
to the presumption that D is a strict weak order.       □ 

Corollary (2.1.5): 

If D satisfies presumptions (2.1.1) and (2.1.2), then (i) every pairwise 
victory is stronger than every pairwise tie and (ii) every pairwise tie is 
stronger than every pairwise defeat. In short: 

(2.1.5) (majority) 

∀ (x1,x2),(y1,y2) ∈ 0 × 0: 
( ( x1 > x2 ∧ y1 ≤ y2 ) ∨ ( x1 ≥ x2 ∧ y1 < y2 ) ) ⇒ (x1,x2) D (y1,y2). 

Proof of corollary (2.1.5): 

Suppose (x1,x2) ∈ 0 × 0 with x1 > x2 is a victory. 

Suppose (y1,y2) ∈ 0 × 0 with y1 = y2 is a tie. 

Suppose (z1,z2) ∈ 0 × 0 with z1 < z2 is a defeat. 

With (2.1.1), we get: (x1,x2) D (x2,x2). 

With (2.1.4), we get: (x2,x2) ≈D (y1,y2). 

With (2.1.4), we get: (y1,y2) ≈D (z1,z1). 

With (2.1.1), we get: (z1,z1) D (z1,z2). 

Therefore, we get: (x1,x2) D (x2,x2) ≈D (y1,y2) ≈D (z1,z1) D (z1,z2). 

Thus, we get (2.1.5).          □ 

 
Suppose ∅ ≠  ⊂ 0 × 0 is finite and non-empty. Then “maxD”, the 

set of maximum elements of , and “minD”, the set of minimum elements 
of , are defined as follows: (β1,β2) ∈ maxD if and only if (1) (β1,β2) ∈  
and (2) (β1,β2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . (γ1,γ2) ∈ minD if and only if      
(1) (γ1,γ2) ∈  and (2) (γ1,γ2) D (δ1,δ2) ∀ (δ1,δ2) ∈ . 

 
We write “(β1,β2) : = maxD” and “(γ1,γ2) : = minD” for “(β1,β2) is an 

arbitrarily chosen element of maxD” and “(γ1,γ2) is an arbitrarily chosen 
element of minD”. 
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2.2. Basic Definitions 
 
In this section, the Schulze method is defined. Concrete examples can be 

found in section 3. 
 
Basic idea of the Schulze method is that the strength of the indirect 

comparison “alternative a vs. alternative b” is the strength of the strongest 
path a ≡ c(1),...,c(n) ≡ b from alternative a ∈ A to alternative b ∈ A \ {a} and 
that the strength of a path is the strength (N[c(i),c(i+1)],N[c(i+1),c(i)]) of its 
weakest link c(i),c(i+1). 

 
The Schulze method is defined as follows: 

 
A path from alternative x ∈ A to alternative y ∈ A \ {x} is a sequence of 
alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. n ∈  with 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 

 
The strength of the path c(1),...,c(n) is 

minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
In other words: The strength of a path is the strength of its weakest link. 
 
When a path c(1),...,c(n) has the strength (z1,z2) ∈ 0 × 0, then the 
critical links of this path are the links with (N[c(i),c(i+1)],N[c(i+1),c(i)]) 
≈D (z1,z2). 
 
PD[a,b] : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a path from alternative a to alternative b }. 
 
In other words: PD[a,b] ∈ 0 × 0 is the strength of the strongest path 
from alternative a ∈ A to alternative b ∈ A \ {a}. 
 
(2.2.1) The binary relation  on A is defined as follows: 

ab ∈  : ⇔ PD[a,b] D PD[b,a]. 
 

(2.2.2)  : = { a ∈ A | ∀ b ∈ A \ {a}: ba ∉  } is the set of 
potential winners. 

 
When there is only one potential winner  = {a}, then this alternative is a 

unique winner. 
 
When PD[a,b] D PD[b,a], then we say “alternative a disqualifies 

alternative b” or “alternative a dominates alternative b”. 
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As the link ab is already a path from alternative a to alternative b of 
strength (N[a,b],N[b,a]), we get 

 
(2.2.3) ∀ a,b ∈ A: PD[a,b] D (N[a,b],N[b,a]). 
 
With (2.2.1) and (2.2.3), we get 
 
(2.2.4) (N[a,b],N[b,a]) D PD[b,a] ⇒ ab ∈ . 
 
Furthermore, we get 

 
(2.2.5) ∀ a,b,c ∈ A: minD { PD[a,b], PD[b,c] } D PD[a,c]. 
 
Otherwise, if minD { PD[a,b], PD[b,c] } was strictly larger than PD[a,c], 

then this would be a contradiction to the definition of PD[a,c] since there 
would be a path from alternative a to alternative c via alternative b with a 
strength of more than PD[a,c]. 

 
Furthermore, we get 

 
(2.2.6) ∀ a,b ∈ A: PD[a,b] D maxD { (N[a,c],N[c,a]) | c ∈ A \ {a} }. 
 
(2.2.7) ∀ a,b ∈ A: PD[a,b] D maxD { (N[c,b],N[b,c]) | c ∈ A \ {b} }. 
 
The asymmetry of  follows directly from the asymmetry of D. The 

irreflexivity of  follows directly from the irreflexivity of D. Furthermore, 
in section 4.1, we will see that the binary relation  is transitive. This 
guarantees that there is always at least one potential winner. 

 
Suppose ∅ ≠ B ⊊ A. Then we get 
 
(2.2.8) ∀ a ∈ B ∀ b ∉ B: PD[a,b] D maxD { (N[c,d],N[d,c]) | c ∈ B and d ∉ B }. 
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2.3. Implementation 
 

2.3.1. Part 1 
 
In section 2.3.1, we explain how to calculate (1) the strict partial order  

on A and (2) the set ∅ ≠  ⊆ A of potential winners, as defined in section 2.2. 
 
The strength PD[i,j] of the strongest path from alternative i ∈ A to 

alternative j ∈ A \ {i} can be calculated with the Floyd-Warshall (Floyd, 
1962; Warshall, 1962) algorithm. The runtime to calculate the strengths of 
all strongest paths is O(C^3), where C is the number of alternatives in A. 
 
Input: N[i,j] ∈ 0 is the number of voters who strictly prefer alternative    

i ∈ A to alternative j ∈ A \ {i}. 
 
Output: PD[i,j] ∈ 0 × 0 is the strength of the strongest path from 

alternative i ∈ A to alternative j ∈ A \ {i}. 
 
pred[i,j] ∈ A \ {j} is the predecessor of alternative j in the strongest 
path from alternative i ∈ A to alternative j ∈ A \ {i}. 
 
 is the binary relation as defined in (2.2.1). 
 
“winner[i] = true” if and only if i ∈ . 

 
Stage 1 (initialization): 
 

1 for i : = 1 to C 
2 begin 
3 for j : = 1 to C 
4 begin 
5 if ( i ≠ j ) then 
6 begin 
7 PD[i,j] : = (N[i,j],N[j,i]) 
8 pred[i,j] : = i 
9 end 

10 end 
11 end 
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Stage 2 (calculation of the strengths of the strongest paths): 
 

12 for i : = 1 to C 
13 begin 
14 for j : = 1 to C 
15 begin 
16 if ( i ≠ j ) then 
17 begin 
18 for k : = 1 to C 
19 begin 
20 if ( i ≠ k ) then 
21 begin 
22 if ( j ≠ k ) then 
23 begin 
24 if ( PD[j,k] D minD { PD[j,i], PD[i,k] } ) then 
25 begin 
26 PD[j,k] : = minD { PD[j,i], PD[i,k] } 
27 if ( pred[j,k] ≠ pred[i,k] ) then 
28 begin 
29 pred[j,k] : = pred[i,k] 
30 end 
31 end 
32 end 
33 end 
34 end 
35 end 
36 end 
37 end 

 
Stage 3 (calculation of the binary relation  and the set of potential winners): 
 

38 for i : = 1 to C 
39 begin 
40 winner[i] : = true 
41 for j : = 1 to C 
42 begin 
43 if ( i ≠ j ) then 
44 begin 
45 if ( PD[j,i] D PD[i,j] ) then 
46 begin 
47 ji ∈  
48 winner[i] : = false 
49 end 
50 else 
51 begin 
52 ji ∉  
53 end 
54 end 
55 end 
56 end 
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(α) It cannot be stressed frequently enough that the order of the indices in 
the triple-loop of the Floyd-Warshall algorithm is not irrelevant. When i is 
the index of the outer loop of the triple-loop of the Floyd-Warshall algorithm, 
then the clause (line 24) must be “ if ( PD[j,k] D minD { PD[j,i], PD[i,k] } ) ”. 
Otherwise, it is not guaranteed that a single pass through the triple-loop of 
the Floyd-Warshall algorithm is sufficient to find the strongest paths. 

 
(β) With the predecessor matrix pred[i,j], we can recursively determine 

the strongest paths. Suppose we want to determine the strongest path 
c(1),...,c(n) from alternative a ∈ A to alternative b ∈ A \ {a}. Then we start 
with 

 
  n : = 1 
 
  d(1) : = b 
 
We repeat 
 
  n : = n + 1 
 
  d(n) : = pred[a,d(n–1)] 
 
until we get d(n) = a for some n ∈ . The strongest path c(1),...,c(n) from 

alternative a to alternative b is then given by d(n),...,d(1). 
 
(γ) The runtime to calculate the pairwise matrix is O(N∙(C^2)). The 

runtime of the Floyd-Warshall algorithm, as defined in this section, is 
O(C^3). Therefore, the total runtime to calculate the binary relation , as 
defined in (2.2.1), and the set , as defined in (2.2.2), is O(N∙(C^2) + C^3). 
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2.3.2. Part 2 
 
In section 2.3.2, we explain how to check whether a concrete alternative 

m ∈ A is a potential winner. 
 
Sometimes, we don’t want to calculate all potential winners. We only 

want to check for a concrete alternative m whether it is a potential winner.  
In this case, we don’t have to calculate the strengths PD[i,j] of the strongest 
paths from every alternative i ∈ A to every other alternative j ∈ A \ {i}. It is 
sufficient to calculate the strengths of the strongest paths from alternative m 
to every other alternative i ∈ A \ {m} and the strengths of the strongest paths 
from every other alternative i ∈ A \ {m} to alternative m. This can be done 
with the Dijkstra (1959) algorithm in a runtime O(C^2). 
 
Input: N[i,j] ∈ 0 is the number of voters who strictly prefer alternative    

i ∈ A to alternative j ∈ A \ {i}. 
 

m ∈ A is that alternative for which we want to check whether it is a 
potential winner. 

 
Output: PD[m,i] ∈ 0 × 0 is the strength of the strongest path from 

alternative m to alternative i ∈ A \ {m}. 
 
PD[i,m] ∈ 0 × 0 is the strength of the strongest path from 
alternative i ∈ A \ {m} to alternative m. 
 
“winner = true” if and only if m is a potential winner. 
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Stage 1 (initialization): 
 

1 n : = 1 
2 if ( m = 1 ) then 
3 begin 
4 n : = 2 
5 end 

 
Stage 2 (calculation of the strengths of the strongest paths from alternative m 
to every other alternative i ∈ A \ {m}): 
 

6 for i : = 1 to C 
7 begin 
8 if ( i ≠ m ) then 
9 begin 

10 PD[m,i] : = (N[m,i],N[i,m]) 
11 marked[i] : = false 
12 end 
13 end 
14 marked[m] : = true 
15 for i : = 1 to ( C – 1 ) 
16 begin 
17 (x1,x2) : = PD[m,n] 
18 j : = n 
19 for k : = 1 to C 
20 begin 
21 if ( marked[k] = false ) then 
22 begin 
23 if  ( ( (x1,x2) D PD[m,k] ) or ( marked[j] = true ) ) then 
24 begin 
25 (x1,x2) : = PD[m,k] 
26 j : = k 
27 end 
28 end 
29 end 
30 marked[j] : = true 
31 for k : = 1 to C 
32 begin 
33 if ( marked[k] = false ) then 
34 begin 
35 if  ( PD[m,k] D minD { PD[m,j], (N[j,k],N[k,j]) } ) then 
36 begin 
37 PD[m,k] : = minD { PD[m,j], (N[j,k],N[k,j]) } 
38 end 
39 end 
40 end 
41 end 

  



Markus Schulze, “The Schulze Method of Voting” 

 19 

Stage 3 (calculation of the strengths of the strongest paths from every other 
alternative i ∈ A \ {m} to alternative m): 
 

42 for i : = 1 to C 
43 begin 
44 if ( i ≠ m ) then 
45 begin 
46 PD[i,m] : = (N[i,m],N[m,i]) 
47 marked[i] : = false 
48 end 
49 end 
50 marked[m] : = true 
51 for i : = 1 to ( C – 1 ) 
52 begin 
53 (x1,x2) : = PD[n,m] 
54 j : = n 
55 for k : = 1 to C 
56 begin 
57 if ( marked[k] = false ) then 
58 begin 
59 if  ( ( (x1,x2) D PD[k,m] ) or ( marked[j] = true ) ) then 
60 begin 
61 (x1,x2) : = PD[k,m] 
62 j : = k 
63 end 
64 end 
65 end 
66 marked[j] : = true 
67 for k : = 1 to C 
68 begin 
69 if ( marked[k] = false ) then 
70 begin 
71 if  ( PD[k,m] D minD { PD[j,m], (N[k,j],N[j,k]) } ) then 
72 begin 
73 PD[k,m] : = minD { PD[j,m], (N[k,j],N[j,k]) } 
74 end 
75 end 
76 end 
77 end 

 
Stage 4 (checking whether alternative m is a potential winner): 
 

78 winner : = true 
79 for i : = 1 to C 
80 begin 
81 if ( i ≠ m ) then 
82 begin 
83 if ( PD[i,m] D PD[m,i] ) then 
84 begin 
85 winner : = false 
86 end 
87 end 
88 end 
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2.3.3. Part 3 
 
Suppose that we have already guessed or determined that the statement    

“ ab ∈  ” is true. In section 2.3.3, we will show how we can then 
demonstrate the correctness of this statement. 

To demonstrate that the statement “ ab ∈  ” is true, we have to present a 
(x1,x2) ∈ 0 × 0 such that (1) there is a path from alternative a to alternative 
b with a strength of at least (x1,x2) and (2) there is no path from alternative b 
to alternative a with a strength of at least (x1,x2). 

To demonstrate that there is a path from alternative a to alternative b with 
a strength of at least (x1,x2), we can simply use the sequence c(1),...,c(n) as 
calculated in remark β of section 2.3.1 or the path as determined in section 
2.3.2 or a path found by guesswork. The runtime to verify that a given 
sequence is really a path from alternative a to alternative b with a strength of 
at least (x1,x2) is O(C). 

When there is no path from alternative b to alternative a with a strength 
of at least (x1,x2), we can demonstrate this by presenting two sets B1 and B2 
such that 

(2.3.3.1)  b ∈ B1. 

(2.3.3.2)  a ∈ B2. 

(2.3.3.3)  B1 ∪ B2 = A. 

(2.3.3.4)  B1 ∩ B2 = ∅. 

(2.3.3.5)  ∀ i ∈ B1 ∀ j ∈ B2: (N[i,j],N[j,i]) D (x1,x2). 

When B1 and B2 are given, then the runtime to verify that (2.3.3.1) – 
(2.3.3.5) are satisfied is O(C^2). 
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(α) Suppose that we have not calculated the strengths of the strongest 
paths from every alternative i ∈ A to every other alternative j ∈ A \ {i}, but 
that we have found a path from alternative a to alternative b of strength 
(x1,x2) ∈ 0 × 0 and want to check whether this path is sufficient so that 
alternative a disqualifies alternative b ( i.e. ab ∈  ). 

 
Then we can calculate the sets B1 and B2, for example, with the “breadth-

first search” (BFS) algorithm as follows. The runtime to calculate the sets B1 
and B2 is O(C^2). 

Input: N[i,j] ∈ 0 is the number of voters who strictly prefer alternative    
i ∈ A to alternative j ∈ A \ {i}. 

(x1,x2) ∈ 0 × 0. 
 

a,b ∈ A are those alternatives for which we want to show that there 
is no path from alternative b to alternative a with a strength of at 
least (x1,x2). 
 

Output: the sets B1 and B2 as described above 

1 B1 : = {b} 
2 m : = 1 
3 array1 [1] : = b 
4 while ( m > 0 ) do 
5 begin 
6 n : = m 
7 for k : = 1 to m 
8 begin 
9 array2 [k] : = array1 [k]  

10 end 
11 m : = 0 
12 for i : = 1 to n 
13 begin 
14 j : = array2 [i] 
15 for k : = 1 to C 
16 begin 
17 if ( k ∉ B1 ) then 
18 begin 
19 if ( (N[j,k],N[k,j]) D (x1,x2) ) then 
20 begin 
21 B1 : = B1 ∪ {k} 
22 m : = m + 1 
23 array1 [m] : = k 
24 end 
25 end 
26 end 
27 end 
28 end 
29 B2 : = A \ B1 

 
When, at some point, alternative a is added to the set B1, then this means 

that a path from alternative a to alternative b of strength (x1,x2) is not 
sufficient so that alternative a disqualifies alternative b. 
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(β) Suppose (1) that we have calculated the strengths of the strongest 
paths from every alternative i ∈ A to every other alternative j ∈ A \ {i}, as 
described in section 2.3.1, and (2) that the statement “ ab ∈  ” is true. Then 
B1 and B2 are given as follows: 

 
B1 : =  ( {b} ∪ { c ∈ A | PD[b,c] D (x1,x2) } ). 
 
B2 : = A \ B1. 
 

3. Examples 
 
Throughout section 3, we presume that D satisfies (2.1.1) so that, 

when each voter v ∈ V casts a linear order v on A, all definitions for D are 
identical. 

 
3.1. Example 1 

 
Example 1: 

 
8 voters a v c v d v b 
2 voters b v a v d v c 
4 voters c v d v b v a 
4 voters d v b v a v c 
3 voters d v c v b v a 
 
N[i,j] ∈ 0 is the number of voters who strictly prefer alternative i ∈ A to 

alternative j ∈ A \ {i}. In example 1, the pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 8 14 10 

N[b,*] 13 --- 6 2 

N[c,*] 7 15 --- 12 

N[d,*] 11 19 9 --- 

 
The following digraph illustrates the graph theoretic interpretation of 

pairwise elections. If N[i,j] > N[j,i], then there is a link from vertex i to 
vertex j of strength (N[i,j],N[j,i]): 

 

 

a b 

c d  

(13,8) 

(14,7) 

(15,6) 

(12,9) 

(11,10) 

(19,2) 
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The above digraph can be used to determine the strengths of the strongest 
paths. In the following, “x, (Z1,Z2), y” means “(N[x,y],N[y,x]) = (Z1,Z2)”. 

 
a → b: There are 2 paths from alternative a to alternative b. 
 

Path 1: a, (14,7), c, (15,6), b 
with a strength of minD { (14,7), (15,6) } ≈D (14,7). 

 
Path 2: a, (14,7), c, (12,9), d, (19,2), b 

  with a strength of minD { (14,7), (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative a to alternative b 
is maxD { (14,7), (12,9) } ≈D (14,7). 
 

a → c: There is only one path from alternative a to alternative c. 
 

Path 1: a, (14,7), c with a strength of (14,7). 
 
a → d: There is only one path from alternative a to alternative d. 
 

Path 1: a, (14,7), c, (12,9), d 
  with a strength of minD { (14,7), (12,9) } ≈D (12,9). 
 
b → a: There is only one path from alternative b to alternative a. 
 

Path 1: b, (13,8), a with a strength of (13,8). 
 
b → c: There is only one path from alternative b to alternative c. 
 

Path 1: b, (13,8), a, (14,7), c 
with a strength of minD { (13,8), (14,7) } ≈D (13,8). 

 
b → d: There is only one path from alternative b to alternative d. 
 

Path 1: b, (13,8), a, (14,7), c, (12,9), d 
with a strength of minD { (13,8), (14,7), (12,9) } ≈D (12,9). 

 
c → a: There are 3 paths from alternative c to alternative a. 
 

Path 1: c, (15,6), b, (13,8), a 
with a strength of minD { (15,6), (13,8) } ≈D (13,8). 

 
Path 2: c, (12,9), d, (11,10), a 

  with a strength of minD { (12,9), (11,10) } ≈D (11,10). 
 

Path 3: c, (12,9), d, (19,2), b, (13,8), a 
  with a strength of minD { (12,9), (19,2), (13,8) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative a 
is maxD { (13,8), (11,10), (12,9) } ≈D (13,8). 
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c → b: There are 2 paths from alternative c to alternative b. 
 

Path 1: c, (15,6), b with a strength of (15,6). 
 

Path 2: c, (12,9), d, (19,2), b 
  with a strength of minD { (12,9), (19,2) } ≈D (12,9). 
 

So the strength of the strongest path from alternative c to alternative b 
is maxD { (15,6), (12,9) } ≈D (15,6). 
 

c → d: There is only one path from alternative c to alternative d. 
 

Path 1: c, (12,9), d with a strength of (12,9). 
 
d → a: There are 2 paths from alternative d to alternative a. 
 

Path 1: d, (11,10), a with a strength of (11,10). 
 

Path 2: d, (19,2), b, (13,8), a 
  with a strength of minD { (19,2), (13,8) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative a 
is maxD { (11,10), (13,8) } ≈D (13,8). 
 

d → b: There are 2 paths from alternative d to alternative b. 
 

Path 1: d, (11,10), a, (14,7), c, (15,6), b 
  with a strength of minD { (11,10), (14,7), (15,6) } ≈D (11,10). 
 

Path 2: d, (19,2), b with a strength of (19,2). 
 

So the strength of the strongest path from alternative d to alternative b 
is maxD { (11,10), (19,2) } ≈D (19,2). 

 
d → c: There are 2 paths from alternative d to alternative c. 
 

Path 1: d, (11,10), a, (14,7), c 
with a strength of minD { (11,10), (14,7) } ≈D (11,10). 

 
Path 2: d, (19,2), b, (13,8), a, (14,7), c 

  with a strength of minD { (19,2), (13,8), (14,7) } ≈D (13,8). 
 

So the strength of the strongest path from alternative d to alternative c 
is maxD { (11,10), (13,8) } ≈D (13,8). 
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The following table lists the strongest paths. The critical links of the 
strongest paths are underlined: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (14,7), c, 
(15,6), b a, (14,7), c a, (14,7), c, 

(12,9), d 

from b ... b, (13,8), a --- b, (13,8), a, 
(14,7), c 

b, (13,8), a, 
(14,7), c, 
(12,9), d 

from c ... c, (15,6), b, 
(13,8), a c, (15,6), b --- c, (12,9), d 

from d ... d, (19,2), b, 
(13,8), a d, (19,2), b 

d, (19,2), b, 
(13,8), a, 
(14,7), c 

--- 

 
The strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (14,7) (14,7) (12,9) 

PD[b,*] (13,8) --- (13,8) (12,9) 

PD[c,*] (13,8) (15,6) --- (12,9) 

PD[d,*] (13,8) (19,2) (13,8) --- 

 
xy ∈  if and only if PD[x,y] D PD[y,x]. So in example 1, we get            

 = {ab, ac, cb, da, db, dc}. 
 
x ∈  if and only if yx ∉  for all y ∈ A \ {x}. So in example 1, we get   

 = {d}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
  



Markus Schulze, “The Schulze Method of Voting” 

 26 

 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (6,15) (13,8) (14,7) b a PD[b,c] is updated from (6,15) to (13,8); 
pred[b,c] is updated from b to a 

2 a b d (2,19) (13,8) (10,11) b a PD[b,d] is updated from (2,19) to (10,11); 
pred[b,d] is updated from b to a 

3 a c b (15,6) (7,14) (8,13) c a  

4 a c d (12,9) (7,14) (10,11) c a  

5 a d b (19,2) (11,10) (8,13) d a  

6 a d c (9,12) (11,10) (14,7) d a PD[d,c] is updated from (9,12) to (11,10); 
pred[d,c] is updated from d to a 

7 b a c (14,7) (8,13) (13,8) a a  

8 b a d (10,11) (8,13) (10,11) a a  

9 b c a (7,14) (15,6) (13,8) c b PD[c,a] is updated from (7,14) to (13,8); 
pred[c,a] is updated from c to b 

10 b c d (12,9) (15,6) (10,11) c a  

11 b d a (11,10) (19,2) (13,8) d b PD[d,a] is updated from (11,10) to (13,8); 
pred[d,a] is updated from d to b 

12 b d c (11,10) (19,2) (13,8) a a PD[d,c] is updated from (11,10) to (13,8) 

13 c a b (8,13) (14,7) (15,6) a c PD[a,b] is updated from (8,13) to (14,7); 
pred[a,b] is updated from a to c 

14 c a d (10,11) (14,7) (12,9) a c PD[a,d] is updated from (10,11) to (12,9); 
pred[a,d] is updated from a to c 

15 c b a (13,8) (13,8) (13,8) b b  

16 c b d (10,11) (13,8) (12,9) a c PD[b,d] is updated from (10,11) to (12,9); 
pred[b,d] is updated from a to c 

17 c d a (13,8) (13,8) (13,8) b b  

18 c d b (19,2) (13,8) (15,6) d c  

19 d a b (14,7) (12,9) (19,2) c d  

20 d a c (14,7) (12,9) (13,8) a a  

21 d b a (13,8) (12,9) (13,8) b b  

22 d b c (13,8) (12,9) (13,8) a a  

23 d c a (13,8) (12,9) (13,8) b b  

24 d c b (15,6) (12,9) (19,2) c d  
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3.2. Example 2 
 

The following example is by Hoag and Hallett (1926, page 502), where 
the authors use this example to illustrate their proposal (Hallett count). 
 
Example 2: 

 
3 voters a v b v c v d 
2 voters c v b v d v a 
2 voters d v a v b v c 
2 voters d v b v c v a 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 5 5 3 

N[b,*] 4 --- 7 5 

N[c,*] 4 2 --- 5 

N[d,*] 6 4 4 --- 

 
The corresponding digraph looks as follows: 
 
 

a b

cd

(5,4)

(5,4)

(7,2)

(5,4)

(6,3)

(5,4)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (5,4), b a, (5,4), c a, (5,4), b, 
(5,4), d 

from b ... b, (5,4), d, 
(6,3), a --- b, (7,2), c b, (5,4), d 

from c ... c, (5,4), d, 
(6,3), a 

c, (5,4), d, 
(6,3), a, 
(5,4), b 

--- c, (5,4), d 

from d ... d, (6,3), a d, (6,3), a, 
(5,4), b 

d, (6,3), a, 
(5,4), c --- 

 
Therefore, the strengths of the strongest paths are: 

 
 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (5,4) (5,4) (5,4) 

PD[b,*] (5,4) --- (7,2) (5,4) 

PD[c,*] (5,4) (5,4) --- (5,4) 

PD[d,*] (6,3) (5,4) (5,4) --- 

 
We get  = {bc, da} and  = {b, d}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (7,2) (4,5) (5,4) b a  

2 a b d (5,4) (4,5) (3,6) b a  

3 a c b (2,7) (4,5) (5,4) c a PD[c,b] is updated from (2,7) to (4,5); 
pred[c,b] is updated from c to a 

4 a c d (5,4) (4,5) (3,6) c a  

5 a d b (4,5) (6,3) (5,4) d a PD[d,b] is updated from (4,5) to (5,4); 
pred[d,b] is updated from d to a 

6 a d c (4,5) (6,3) (5,4) d a PD[d,c] is updated from (4,5) to (5,4); 
pred[d,c] is updated from d to a 

7 b a c (5,4) (5,4) (7,2) a b  

8 b a d (3,6) (5,4) (5,4) a b PD[a,d] is updated from (3,6) to (5,4); 
pred[a,d] is updated from a to b 

9 b c a (4,5) (4,5) (4,5) c b  

10 b c d (5,4) (4,5) (5,4) c b  

11 b d a (6,3) (5,4) (4,5) d b  

12 b d c (5,4) (5,4) (7,2) a b  

13 c a b (5,4) (5,4) (4,5) a a  

14 c a d (5,4) (5,4) (5,4) b c  

15 c b a (4,5) (7,2) (4,5) b c  

16 c b d (5,4) (7,2) (5,4) b c  

17 c d a (6,3) (5,4) (4,5) d c  

18 c d b (5,4) (5,4) (4,5) a a  

19 d a b (5,4) (5,4) (5,4) a a  

20 d a c (5,4) (5,4) (5,4) a a  

21 d b a (4,5) (5,4) (6,3) b d PD[b,a] is updated from (4,5) to (5,4); 
pred[b,a] is updated from b to d 

22 d b c (7,2) (5,4) (5,4) b a  

23 d c a (4,5) (5,4) (6,3) c d PD[c,a] is updated from (4,5) to (5,4); 
pred[c,a] is updated from c to d 

24 d c b (4,5) (5,4) (5,4) a a PD[c,b] is updated from (4,5) to (5,4) 



Markus Schulze, “The Schulze Method of Voting” 

 30 

3.3. Example 3 
 

Example 3: 
 
12 voters a v b v c v d 
6 voters a v d v b v c 
9 voters b v c v d v a 
15 voters c v d v a v b 
21 voters d v b v a v c 

 
The pairwise matrix N looks as follows: 

 
 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 33 39 18 

N[b,*] 30 --- 48 21 

N[c,*] 24 15 --- 36 

N[d,*] 45 42 27 --- 

 
The corresponding digraph looks as follows: 

 
 

 
 

  

a b 

c d 

(33,30) 

(39,24) 

(48,15) 

(36,27) 

(45,18) 

(42,21) 
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The strongest paths are: 

 ... to a ... to b ... to c ... to d 

from a ... --- 
a, (39,24), c, 
(36,27), d, 
(42,21), b 

a, (39,24), c a, (39,24), c, 
(36,27), d 

from b ... 
b, (48,15), c, 
(36,27), d, 
(45,18), a 

--- b, (48,15), c b, (48,15), c, 
(36,27), d 

from c ... c, (36,27), d, 
(45,18), a 

c, (36,27), d, 
(42,21), b --- c, (36,27), d 

from d ... d, (45,18), a d, (42,21), b d, (42,21), b, 
(48,15), c --- 

Therefore, the strengths of the strongest paths are: 

 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (36,27) (39,24) (36,27) 

PD[b,*] (36,27) --- (48,15) (36,27) 

PD[c,*] (36,27) (36,27) --- (36,27) 

PD[d,*] (45,18) (42,21) (42,21) --- 

 
We get  = {ac, bc, da, db, dc} and  = {d}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
  



Markus Schulze, “The Schulze Method of Voting” 

 32 

 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (48,15) (30,33) (39,24) b a  

2 a b d (21,42) (30,33) (18,45) b a  

3 a c b (15,48) (24,39) (33,30) c a PD[c,b] is updated from (15,48) to (24,39); 
pred[c,b] is updated from c to a 

4 a c d (36,27) (24,39) (18,45) c a  

5 a d b (42,21) (45,18) (33,30) d a  

6 a d c (27,36) (45,18) (39,24) d a PD[d,c] is updated from (27,36) to (39,24); 
pred[d,c] is updated from d to a 

7 b a c (39,24) (33,30) (48,15) a b  

8 b a d (18,45) (33,30) (21,42) a b PD[a,d] is updated from (18,45) to (21,42); 
pred[a,d] is updated from a to b 

9 b c a (24,39) (24,39) (30,33) c b  

10 b c d (36,27) (24,39) (21,42) c b  

11 b d a (45,18) (42,21) (30,33) d b  

12 b d c (39,24) (42,21) (48,15) a b PD[d,c] is updated from (39,24) to (42,21); 
pred[d,c] is updated from a to b 

13 c a b (33,30) (39,24) (24,39) a a  

14 c a d (21,42) (39,24) (36,27) b c PD[a,d] is updated from (21,42) to (36,27); 
pred[a,d] is updated from b to c 

15 c b a (30,33) (48,15) (24,39) b c  

16 c b d (21,42) (48,15) (36,27) b c PD[b,d] is updated from (21,42) to (36,27); 
pred[b,d] is updated from b to c 

17 c d a (45,18) (42,21) (24,39) d c  

18 c d b (42,21) (42,21) (24,39) d a  

19 d a b (33,30) (36,27) (42,21) a d PD[a,b] is updated from (33,30) to (36,27); 
pred[a,b] is updated from a to d 

20 d a c (39,24) (36,27) (42,21) a b  

21 d b a (30,33) (36,27) (45,18) b d PD[b,a] is updated from (30,33) to (36,27); 
pred[b,a] is updated from b to d 

22 d b c (48,15) (36,27) (42,21) b b  

23 d c a (24,39) (36,27) (45,18) c d PD[c,a] is updated from (24,39) to (36,27); 
pred[c,a] is updated from c to d 

24 d c b (24,39) (36,27) (42,21) a d PD[c,b] is updated from (24,39) to (36,27); 
pred[c,b] is updated from a to d 
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3.4. Example 4 
 

Example 4: 
 
6 voters a v c v d v b 
1 voter b v a v d v c 
3 voters c v b v d v a 
3 voters d v b v a v c 
2 voters d v c v b v a 

 
The pairwise matrix N looks as follows: 

 
 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 6 10 7 

N[b,*] 9 --- 4 4 

N[c,*] 5 11 --- 9 

N[d,*] 8 11 6 --- 

 
The corresponding digraph looks as follows: 

 

 
  

a b 

c d 

(9,6) 

(10,5) 

(11,4) 

(9,6) 

(8,7) 

(11,4) 
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The strongest paths are: 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (10,5), c, 
(11,4), b a, (10,5), c a, (10,5), c, 

(9,6), d 

from b ... b, (9,6), a --- b, (9,6), a, 
(10,5), c 

b, (9,6), a, 
(10,5), c, 
(9,6), d 

from c ... c, (11,4), b, 
(9,6), a c, (11,4), b --- c, (9,6), d 

from d ... d, (11,4), b, 
(9,6), a d, (11,4), b 

d, (11,4), b, 
(9,6), a, 
(10,5), c 

--- 

Therefore, the strengths of the strongest paths are: 

 PD[*,a] PD[*,b] PD[*,c] PD[*,d] 

PD[a,*] --- (10,5) (10,5) (9,6) 

PD[b,*] (9,6) --- (9,6) (9,6) 

PD[c,*] (9,6) (11,4) --- (9,6) 

PD[d,*] (9,6) (11,4) (9,6) --- 

 
We get  = {ab, ac, cb, db} and  = {a, d}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (4,11) (9,6) (10,5) b a PD[b,c] is updated from (4,11) to (9,6); 
pred[b,c] is updated from b to a 

2 a b d (4,11) (9,6) (7,8) b a PD[b,d] is updated from (4,11) to (7,8); 
pred[b,d] is updated from b to a 

3 a c b (11,4) (5,10) (6,9) c a  

4 a c d (9,6) (5,10) (7,8) c a  

5 a d b (11,4) (8,7) (6,9) d a  

6 a d c (6,9) (8,7) (10,5) d a PD[d,c] is updated from (6,9) to (8,7); 
pred[d,c] is updated from d to a 

7 b a c (10,5) (6,9) (9,6) a a  

8 b a d (7,8) (6,9) (7,8) a a  

9 b c a (5,10) (11,4) (9,6) c b PD[c,a] is updated from (5,10) to (9,6); 
pred[c,a] is updated from c to b 

10 b c d (9,6) (11,4) (7,8) c a  

11 b d a (8,7) (11,4) (9,6) d b PD[d,a] is updated from (8,7) to (9,6); 
pred[d,a] is updated from d to b 

12 b d c (8,7) (11,4) (9,6) a a PD[d,c] is updated from (8,7) to (9,6) 

13 c a b (6,9) (10,5) (11,4) a c PD[a,b] is updated from (6,9) to (10,5); 
pred[a,b] is updated from a to c 

14 c a d (7,8) (10,5) (9,6) a c PD[a,d] is updated from (7,8) to (9,6); 
pred[a,d] is updated from a to c 

15 c b a (9,6) (9,6) (9,6) b b  

16 c b d (7,8) (9,6) (9,6) a c PD[b,d] is updated from (7,8) to (9,6); 
pred[b,d] is updated from a to c 

17 c d a (9,6) (9,6) (9,6) b b  

18 c d b (11,4) (9,6) (11,4) d c  

19 d a b (10,5) (9,6) (11,4) c d  

20 d a c (10,5) (9,6) (9,6) a a  

21 d b a (9,6) (9,6) (9,6) b b  

22 d b c (9,6) (9,6) (9,6) a a  

23 d c a (9,6) (9,6) (9,6) b b  

24 d c b (11,4) (9,6) (11,4) c d  
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3.5. Example 5 
 

The basic idea for the following example has been proposed by Cretney 
(1998). 

 
3.5.1. Situation #1 

 
Example 5 (old): 

 
3 voters a v d v e v b v c v f 
3 voters b v f v e v c v d v a 
4 voters c v a v b v f v d v e 
1 voter d v b v c v e v f v a 
4 voters d v e v f v a v b v c 
2 voters e v c v b v d v f v a 
2 voters f v a v c v d v b v e 

 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] Nold[*,e] Nold[*,f] 

Nold[a,*] --- 13 9 9 9 7 

Nold[b,*] 6 --- 11 9 10 13 

Nold[c,*] 10 8 --- 11 7 10 

Nold[d,*] 10 10 8 --- 14 10 

Nold[e,*] 10 9 12 5 --- 10 

Nold[f,*] 12 6 9 9 9 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(13,6)

(14,5)

(11,8)

e

f

(10,9)

(12,7)

(10,9)

(10,9) (10,9)

(10,9)

(10,9)

(10,9)

(10,9) (11,8)

(12,7)

(13,6)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (13,6), b a, (13,6), b, 
(11,8), c 

a, (13,6), b, 
(11,8), c, 
(11,8), d 

a, (13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

a, (13,6), b, 
(13,6), f 

from b ... b, (13,6), f, 
(12,7), a --- b, (11,8), c b, (11,8), c, 

(11,8), d 

b, (11,8), c, 
(11,8), d, 
(14,5), e 

b, (13,6), f 

from c ... c, (10,9), a c, (10,9), a, 
(13,6), b --- c, (11,8), d c, (11,8), d, 

(14,5), e c, (10,9), f 

from d ... d, (10,9), a d, (10,9), b d, (14,5), e, 
(12,7), c --- d, (14,5), e d, (10,9), f 

from e ... e, (10,9), a e, (10,9), a, 
(13,6), b e, (12,7), c e, (12,7), c, 

(11,8), d --- e, (10,9), f 

from f ... f, (12,7), a f, (12,7), a, 
(13,6), b 

f, (12,7), a, 
(13,6), b, 
(11,8), c 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d 

f, (12,7), a, 
(13,6), b, 
(11,8), c, 
(11,8), d, 
(14,5), e 

--- 

 
We get old = {ab, ac, ad, ae, af, bc, bd, be, bf, dc, de, ec, fc, fd, fe} and 

old = {a}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 120 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (11,8) (6,13) (9,10) b a  

2 a b d (9,10) (6,13) (9,10) b a  

3 a b e (10,9) (6,13) (9,10) b a  

4 a b f (13,6) (6,13) (7,12) b a  

5 a c b (8,11) (10,9) (13,6) c a PD[c,b] is updated from (8,11) to (10,9); 
pred[c,b] is updated from c to a 

6 a c d (11,8) (10,9) (9,10) c a  

7 a c e (7,12) (10,9) (9,10) c a PD[c,e] is updated from (7,12) to (9,10); 
pred[c,e] is updated from c to a 

8 a c f (10,9) (10,9) (7,12) c a  

9 a d b (10,9) (10,9) (13,6) d a  

10 a d c (8,11) (10,9) (9,10) d a PD[d,c] is updated from (8,11) to (9,10); 
pred[d,c] is updated from d to a 

11 a d e (14,5) (10,9) (9,10) d a  

12 a d f (10,9) (10,9) (7,12) d a  

13 a e b (9,10) (10,9) (13,6) e a PD[e,b] is updated from (9,10) to (10,9); 
pred[e,b] is updated from e to a 

14 a e c (12,7) (10,9) (9,10) e a  

15 a e d (5,14) (10,9) (9,10) e a PD[e,d] is updated from (5,14) to (9,10); 
pred[e,d] is updated from e to a 

16 a e f (10,9) (10,9) (7,12) e a  

17 a f b (6,13) (12,7) (13,6) f a PD[f,b] is updated from (6,13) to (12,7); 
pred[f,b] is updated from f to a 

18 a f c (9,10) (12,7) (9,10) f a  

19 a f d (9,10) (12,7) (9,10) f a  

20 a f e (9,10) (12,7) (9,10) f a  

21 b a c (9,10) (13,6) (11,8) a b PD[a,c] is updated from (9,10) to (11,8); 
pred[a,c] is updated from a to b 

22 b a d (9,10) (13,6) (9,10) a b  

23 b a e (9,10) (13,6) (10,9) a b PD[a,e] is updated from (9,10) to (10,9); 
pred[a,e] is updated from a to b 

24 b a f (7,12) (13,6) (13,6) a b PD[a,f] is updated from (7,12) to (13,6); 
pred[a,f] is updated from a to b 

25 b c a (10,9) (10,9) (6,13) c b  

26 b c d (11,8) (10,9) (9,10) c b  

27 b c e (9,10) (10,9) (10,9) a b PD[c,e] is updated from (9,10) to (10,9); 
pred[c,e] is updated from a to b 

28 b c f (10,9) (10,9) (13,6) c b  

29 b d a (10,9) (10,9) (6,13) d b  

30 b d c (9,10) (10,9) (11,8) a b PD[d,c] is updated from (9,10) to (10,9); 
pred[d,c] is updated from a to b 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 b d e (14,5) (10,9) (10,9) d b  

32 b d f (10,9) (10,9) (13,6) d b  

33 b e a (10,9) (10,9) (6,13) e b  

34 b e c (12,7) (10,9) (11,8) e b  

35 b e d (9,10) (10,9) (9,10) a b  

36 b e f (10,9) (10,9) (13,6) e b  

37 b f a (12,7) (12,7) (6,13) f b  

38 b f c (9,10) (12,7) (11,8) f b PD[f,c] is updated from (9,10) to (11,8); 
pred[f,c] is updated from f to b 

39 b f d (9,10) (12,7) (9,10) f b  

40 b f e (9,10) (12,7) (10,9) f b PD[f,e] is updated from (9,10) to (10,9); 
pred[f,e] is updated from f to b 

41 c a b (13,6) (11,8) (10,9) a a  

42 c a d (9,10) (11,8) (11,8) a c PD[a,d] is updated from (9,10) to (11,8); 
pred[a,d] is updated from a to c 

43 c a e (10,9) (11,8) (10,9) b b  

44 c a f (13,6) (11,8) (10,9) b c  

45 c b a (6,13) (11,8) (10,9) b c PD[b,a] is updated from (6,13) to (10,9); 
pred[b,a] is updated from b to c 

46 c b d (9,10) (11,8) (11,8) b c PD[b,d] is updated from (9,10) to (11,8); 
pred[b,d] is updated from b to c 

47 c b e (10,9) (11,8) (10,9) b b  

48 c b f (13,6) (11,8) (10,9) b c  

49 c d a (10,9) (10,9) (10,9) d c  

50 c d b (10,9) (10,9) (10,9) d a  

51 c d e (14,5) (10,9) (10,9) d b  

52 c d f (10,9) (10,9) (10,9) d c  

53 c e a (10,9) (12,7) (10,9) e c  

54 c e b (10,9) (12,7) (10,9) a a  

55 c e d (9,10) (12,7) (11,8) a c PD[e,d] is updated from (9,10) to (11,8); 
pred[e,d] is updated from a to c 

56 c e f (10,9) (12,7) (10,9) e c  

57 c f a (12,7) (11,8) (10,9) f c  

58 c f b (12,7) (11,8) (10,9) a a  

59 c f d (9,10) (11,8) (11,8) f c PD[f,d] is updated from (9,10) to (11,8); 
pred[f,d] is updated from f to c 

60 c f e (10,9) (11,8) (10,9) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

61 d a b (13,6) (11,8) (10,9) a d  

62 d a c (11,8) (11,8) (10,9) b b  

63 d a e (10,9) (11,8) (14,5) b d PD[a,e] is updated from (10,9) to (11,8); 
pred[a,e] is updated from b to d 

64 d a f (13,6) (11,8) (10,9) b d  

65 d b a (10,9) (11,8) (10,9) c d  

66 d b c (11,8) (11,8) (10,9) b b  

67 d b e (10,9) (11,8) (14,5) b d PD[b,e] is updated from (10,9) to (11,8); 
pred[b,e] is updated from b to d 

68 d b f (13,6) (11,8) (10,9) b d  

69 d c a (10,9) (11,8) (10,9) c d  

70 d c b (10,9) (11,8) (10,9) a d  

71 d c e (10,9) (11,8) (14,5) b d PD[c,e] is updated from (10,9) to (11,8); 
pred[c,e] is updated from b to d 

72 d c f (10,9) (11,8) (10,9) c d  

73 d e a (10,9) (11,8) (10,9) e d  

74 d e b (10,9) (11,8) (10,9) a d  

75 d e c (12,7) (11,8) (10,9) e b  

76 d e f (10,9) (11,8) (10,9) e d  

77 d f a (12,7) (11,8) (10,9) f d  

78 d f b (12,7) (11,8) (10,9) a d  

79 d f c (11,8) (11,8) (10,9) b b  

80 d f e (10,9) (11,8) (14,5) b d PD[f,e] is updated from (10,9) to (11,8); 
pred[f,e] is updated from b to d 

81 e a b (13,6) (11,8) (10,9) a a  

82 e a c (11,8) (11,8) (12,7) b e  

83 e a d (11,8) (11,8) (11,8) c c  

84 e a f (13,6) (11,8) (10,9) b e  

85 e b a (10,9) (11,8) (10,9) c e  

86 e b c (11,8) (11,8) (12,7) b e  

87 e b d (11,8) (11,8) (11,8) c c  

88 e b f (13,6) (11,8) (10,9) b e  

89 e c a (10,9) (11,8) (10,9) c e  

90 e c b (10,9) (11,8) (10,9) a a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

91 e c d (11,8) (11,8) (11,8) c c  

92 e c f (10,9) (11,8) (10,9) c e  

93 e d a (10,9) (14,5) (10,9) d e  

94 e d b (10,9) (14,5) (10,9) d a  

95 e d c (10,9) (14,5) (12,7) b e PD[d,c] is updated from (10,9) to (12,7); 
pred[d,c] is updated from b to e 

96 e d f (10,9) (14,5) (10,9) d e  

97 e f a (12,7) (11,8) (10,9) f e  

98 e f b (12,7) (11,8) (10,9) a a  

99 e f c (11,8) (11,8) (12,7) b e  

100 e f d (11,8) (11,8) (11,8) c c  

101 f a b (13,6) (13,6) (12,7) a a  

102 f a c (11,8) (13,6) (11,8) b b  

103 f a d (11,8) (13,6) (11,8) c c  

104 f a e (11,8) (13,6) (11,8) d d  

105 f b a (10,9) (13,6) (12,7) c f PD[b,a] is updated from (10,9) to (12,7); 
pred[b,a] is updated from c to f 

106 f b c (11,8) (13,6) (11,8) b b  

107 f b d (11,8) (13,6) (11,8) c c  

108 f b e (11,8) (13,6) (11,8) d d  

109 f c a (10,9) (10,9) (12,7) c f  

110 f c b (10,9) (10,9) (12,7) a a  

111 f c d (11,8) (10,9) (11,8) c c  

112 f c e (11,8) (10,9) (11,8) d d  

113 f d a (10,9) (10,9) (12,7) d f  

114 f d b (10,9) (10,9) (12,7) d a  

115 f d c (12,7) (10,9) (11,8) e b  

116 f d e (14,5) (10,9) (11,8) d d  

117 f e a (10,9) (10,9) (12,7) e f  

118 f e b (10,9) (10,9) (12,7) a a  

119 f e c (12,7) (10,9) (11,8) e b  

120 f e d (11,8) (10,9) (11,8) c c  
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3.5.2. Situation #2 
 
When 2 a v e v f v c v b v d ballots are added, then the pairwise 

matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] Nnew[*,f] 

Nnew[a,*] --- 15 11 11 11 9 

Nnew[b,*] 6 --- 11 11 10 13 

Nnew[c,*] 10 10 --- 13 7 10 

Nnew[d,*] 10 10 8 --- 14 10 

Nnew[e,*] 10 11 14 7 --- 12 

Nnew[f,*] 12 8 11 11 9 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(15,6)

(14,7)

(11,10)

e

f

(11,10)

(14,7)

(11,10)

(11,10) (11,10)

(11,10)

(11,10)

(11,10)

(12,9) (13,8)

(12,9)

(13,8)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e ... to f 

from a ... --- a, (15,6), b a, (11,10), c a, (11,10), d a, (11,10), e a, (15,6), b, 
(13,8), f  

from b ... b, (13,8), f, 
(12,9), a --- b, (11,10), c b, (11,10), d b, (11,10), d, 

(14,7), e b, (13,8), f 

from c ... 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a 

c, (13,8), d, 
(14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

--- c, (13,8), d c, (13,8), d, 
(14,7), e 

c, (13,8), d, 
(14,7), e, 
(12,9), f 

from d ... 
d, (14,7), e, 

(12,9), f, 
(12,9), a 

d, (14,7), e, 
(12,9), f, 
(12,9), a, 
(15,6), b 

d, (14,7), e, 
(14,7), c --- d, (14,7), e d, (14,7), e, 

(12,9), f 

from e ... e, (12,9), f, 
(12,9), a 

e, (12,9), f, 
(12,9), a, 
(15,6), b 

e, (14,7), c e, (14,7), c, 
(13,8), d --- e, (12,9), f 

from f ... f, (12,9), a f, (12,9), a, 
(15,6), b f, (11,10), c f, (11,10), d f, (12,9), a, 

(11,10), e --- 

 
We get new = {ab, af, bf, ca, cb, cf, da, db, dc, de, df, ea, eb, ec, ef} and 

new = {d}. 
 
Thus the 2 a v e v f v c v b v d voters change the unique winner from 

alternative a to alternative d. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 120 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (11,10) (6,15) (11,10) b a  

2 a b d (11,10) (6,15) (11,10) b a  

3 a b e (10,11) (6,15) (11,10) b a  

4 a b f (13,8) (6,15) (9,12) b a  

5 a c b (10,11) (10,11) (15,6) c a  

6 a c d (13,8) (10,11) (11,10) c a  

7 a c e (7,14) (10,11) (11,10) c a PD[c,e] is updated from (7,14) to (10,11); 
pred[c,e] is updated from c to a 

8 a c f (10,11) (10,11) (9,12) c a  

9 a d b (10,11) (10,11) (15,6) d a  

10 a d c (8,13) (10,11) (11,10) d a PD[d,c] is updated from (8,13) to (10,11); 
pred[d,c] is updated from d to a 

11 a d e (14,7) (10,11) (11,10) d a  

12 a d f (10,11) (10,11) (9,12) d a  

13 a e b (11,10) (10,11) (15,6) e a  

14 a e c (14,7) (10,11) (11,10) e a  

15 a e d (7,14) (10,11) (11,10) e a PD[e,d] is updated from (7,14) to (10,11); 
pred[e,d] is updated from e to a 

16 a e f (12,9) (10,11) (9,12) e a  

17 a f b (8,13) (12,9) (15,6) f a PD[f,b] is updated from (8,13) to (12,9); 
pred[f,b] is updated from f to a 

18 a f c (11,10) (12,9) (11,10) f a  

19 a f d (11,10) (12,9) (11,10) f a  

20 a f e (9,12) (12,9) (11,10) f a PD[f,e] is updated from (9,12) to (11,10); 
pred[f,e] is updated from f to a 

21 b a c (11,10) (15,6) (11,10) a b  

22 b a d (11,10) (15,6) (11,10) a b  

23 b a e (11,10) (15,6) (10,11) a b  

24 b a f (9,12) (15,6) (13,8) a b PD[a,f] is updated from (9,12) to (13,8); 
pred[a,f] is updated from a to b 

25 b c a (10,11) (10,11) (6,15) c b  

26 b c d (13,8) (10,11) (11,10) c b  

27 b c e (10,11) (10,11) (10,11) a b  

28 b c f (10,11) (10,11) (13,8) c b  

29 b d a (10,11) (10,11) (6,15) d b  

30 b d c (10,11) (10,11) (11,10) a b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 b d e (14,7) (10,11) (10,11) d b  

32 b d f (10,11) (10,11) (13,8) d b  

33 b e a (10,11) (11,10) (6,15) e b  

34 b e c (14,7) (11,10) (11,10) e b  

35 b e d (10,11) (11,10) (11,10) a b PD[e,d] is updated from (10,11) to (11,10); 
pred[e,d] is updated from a to b 

36 b e f (12,9) (11,10) (13,8) e b  

37 b f a (12,9) (12,9) (6,15) f b  

38 b f c (11,10) (12,9) (11,10) f b  

39 b f d (11,10) (12,9) (11,10) f b  

40 b f e (11,10) (12,9) (10,11) a b  

41 c a b (15,6) (11,10) (10,11) a c  

42 c a d (11,10) (11,10) (13,8) a c  

43 c a e (11,10) (11,10) (10,11) a a  

44 c a f (13,8) (11,10) (10,11) b c  

45 c b a (6,15) (11,10) (10,11) b c PD[b,a] is updated from (6,15) to (10,11); 
pred[b,a] is updated from b to c 

46 c b d (11,10) (11,10) (13,8) b c  

47 c b e (10,11) (11,10) (10,11) b a  

48 c b f (13,8) (11,10) (10,11) b c  

49 c d a (10,11) (10,11) (10,11) d c  

50 c d b (10,11) (10,11) (10,11) d c  

51 c d e (14,7) (10,11) (10,11) d a  

52 c d f (10,11) (10,11) (10,11) d c  

53 c e a (10,11) (14,7) (10,11) e c  

54 c e b (11,10) (14,7) (10,11) e c  

55 c e d (11,10) (14,7) (13,8) b c PD[e,d] is updated from (11,10) to (13,8); 
pred[e,d] is updated from b to c 

56 c e f (12,9) (14,7) (10,11) e c  

57 c f a (12,9) (11,10) (10,11) f c  

58 c f b (12,9) (11,10) (10,11) a c  

59 c f d (11,10) (11,10) (13,8) f c  

60 c f e (11,10) (11,10) (10,11) a a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

61 d a b (15,6) (11,10) (10,11) a d  

62 d a c (11,10) (11,10) (10,11) a a  

63 d a e (11,10) (11,10) (14,7) a d  

64 d a f (13,8) (11,10) (10,11) b d  

65 d b a (10,11) (11,10) (10,11) c d  

66 d b c (11,10) (11,10) (10,11) b a  

67 d b e (10,11) (11,10) (14,7) b d PD[b,e] is updated from (10,11) to (11,10); 
pred[b,e] is updated from b to d 

68 d b f (13,8) (11,10) (10,11) b d  

69 d c a (10,11) (13,8) (10,11) c d  

70 d c b (10,11) (13,8) (10,11) c d  

71 d c e (10,11) (13,8) (14,7) a d PD[c,e] is updated from (10,11) to (13,8); 
pred[c,e] is updated from a to d 

72 d c f (10,11) (13,8) (10,11) c d  

73 d e a (10,11) (13,8) (10,11) e d  

74 d e b (11,10) (13,8) (10,11) e d  

75 d e c (14,7) (13,8) (10,11) e a  

76 d e f (12,9) (13,8) (10,11) e d  

77 d f a (12,9) (11,10) (10,11) f d  

78 d f b (12,9) (11,10) (10,11) a d  

79 d f c (11,10) (11,10) (10,11) f a  

80 d f e (11,10) (11,10) (14,7) a d  

81 e a b (15,6) (11,10) (11,10) a e  

82 e a c (11,10) (11,10) (14,7) a e  

83 e a d (11,10) (11,10) (13,8) a c  

84 e a f (13,8) (11,10) (12,9) b e  

85 e b a (10,11) (11,10) (10,11) c e  

86 e b c (11,10) (11,10) (14,7) b e  

87 e b d (11,10) (11,10) (13,8) b c  

88 e b f (13,8) (11,10) (12,9) b e  

89 e c a (10,11) (13,8) (10,11) c e  

90 e c b (10,11) (13,8) (11,10) c e PD[c,b] is updated from (10,11) to (11,10); 
pred[c,b] is updated from c to e 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

91 e c d (13,8) (13,8) (13,8) c c  

92 e c f (10,11) (13,8) (12,9) c e PD[c,f] is updated from (10,11) to (12,9); 
pred[c,f] is updated from c to e 

93 e d a (10,11) (14,7) (10,11) d e  

94 e d b (10,11) (14,7) (11,10) d e PD[d,b] is updated from (10,11) to (11,10); 
pred[d,b] is updated from d to e 

95 e d c (10,11) (14,7) (14,7) a e PD[d,c] is updated from (10,11) to (14,7); 
pred[d,c] is updated from a to e 

96 e d f (10,11) (14,7) (12,9) d e PD[d,f] is updated from (10,11) to (12,9); 
pred[d,f] is updated from d to e 

97 e f a (12,9) (11,10) (10,11) f e  

98 e f b (12,9) (11,10) (11,10) a e  

99 e f c (11,10) (11,10) (14,7) f e  

100 e f d (11,10) (11,10) (13,8) f c  

101 f a b (15,6) (13,8) (12,9) a a  

102 f a c (11,10) (13,8) (11,10) a f  

103 f a d (11,10) (13,8) (11,10) a f  

104 f a e (11,10) (13,8) (11,10) a a  

105 f b a (10,11) (13,8) (12,9) c f PD[b,a] is updated from (10,11) to (12,9); 
pred[b,a] is updated from c to f 

106 f b c (11,10) (13,8) (11,10) b f  

107 f b d (11,10) (13,8) (11,10) b f  

108 f b e (11,10) (13,8) (11,10) d a  

109 f c a (10,11) (12,9) (12,9) c f PD[c,a] is updated from (10,11) to (12,9); 
pred[c,a] is updated from c to f 

110 f c b (11,10) (12,9) (12,9) e a PD[c,b] is updated from (11,10) to (12,9); 
pred[c,b] is updated from e to a 

111 f c d (13,8) (12,9) (11,10) c f  

112 f c e (13,8) (12,9) (11,10) d a  

113 f d a (10,11) (12,9) (12,9) d f PD[d,a] is updated from (10,11) to (12,9); 
pred[d,a] is updated from d to f 

114 f d b (11,10) (12,9) (12,9) e a PD[d,b] is updated from (11,10) to (12,9); 
pred[d,b] is updated from e to a 

115 f d c (14,7) (12,9) (11,10) e f  

116 f d e (14,7) (12,9) (11,10) d a  

117 f e a (10,11) (12,9) (12,9) e f PD[e,a] is updated from (10,11) to (12,9); 
pred[e,a] is updated from e to f 

118 f e b (11,10) (12,9) (12,9) e a PD[e,b] is updated from (11,10) to (12,9); 
pred[e,b] is updated from e to a 

119 f e c (14,7) (12,9) (11,10) e f  

120 f e d (13,8) (12,9) (11,10) c f  
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3.6. Example 6 
 

When i v j for every v ∈ V, then we say “alternative i Pareto-dominates 
alternative j”. 

 
Suppose an alternative j is added such that: 
 
(3.6.1) ∃ i ∈ Aold ∀ v ∈ V: i  v

new  j. 
 

(3.6.2) ∀ g,h ∈ Aold ∀ v ∈ V: g  v
old  h ⇔ g  v

new  h. 
 
Then independence from Pareto-dominated alternatives (IPDA) says that 

we must get: 
 
(3.6.3) ∀ g,h ∈ Aold: gh ∈ old ⇔ gh ∈ new. 
 
(3.6.4) ∀ g ∈ Aold: g ∈ old ⇔ g ∈ new. 
 
The following example demonstrates that the Schulze method, as defined 

in section 2.2, does not satisfy IPDA. This example has been proposed by 
Eppley (2003). 

 
3.6.1. Situation #1 
 
Example 6 (old): 

 
3 voters a v b v d v c 
5 voters a v d v b v c 
1 voter a v d v c v b 
2 voters b v a v d v c 
2 voters b v d v c v a 
4 voters c v a v b v d 
6 voters c v b v a v d 
2 voters d v b v c v a 
5 voters d v c v a v b 
 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] 

Nold[a,*] --- 18 11 21 

Nold[b,*] 12 --- 14 17 

Nold[c,*] 19 16 --- 10 

Nold[d,*] 9 13 20 --- 
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The corresponding digraph looks as follows: 
 
 

 
 
 
The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d 

from b ... 
b, (17,13), d, 

(20,10), c, 
(19,11), a 

--- b, (17,13), d, 
(20,10), c b, (17,13), d 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- 

 
We get old = {ab, ac, ad, cb, db, dc} and old = {a}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
  

a b 

c d  

(18,12) 

(19,11) (17,13) 

(21,9) (16,14) 

(20,10) 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (14,16) (12,18) (11,19) b a  

2 a b d (17,13) (12,18) (21,9) b a  

3 a c b (16,14) (19,11) (18,12) c a PD[c,b] is updated from (16,14) to (18,12); 
pred[c,b] is updated from c to a 

4 a c d (10,20) (19,11) (21,9) c a PD[c,d] is updated from (10,20) to (19,11); 
pred[c,d] is updated from c to a 

5 a d b (13,17) (9,21) (18,12) d a  

6 a d c (20,10) (9,21) (11,19) d a  

7 b a c (11,19) (18,12) (14,16) a b PD[a,c] is updated from (11,19) to (14,16); 
pred[a,c] is updated from a to b 

8 b a d (21,9) (18,12) (17,13) a b  

9 b c a (19,11) (18,12) (12,18) c b  

10 b c d (19,11) (18,12) (17,13) a b  

11 b d a (9,21) (13,17) (12,18) d b PD[d,a] is updated from (9,21) to (12,18); 
pred[d,a] is updated from d to b 

12 b d c (20,10) (13,17) (14,16) d b  

13 c a b (18,12) (14,16) (18,12) a a  

14 c a d (21,9) (14,16) (19,11) a a  

15 c b a (12,18) (14,16) (19,11) b c PD[b,a] is updated from (12,18) to (14,16); 
pred[b,a] is updated from b to c 

16 c b d (17,13) (14,16) (19,11) b a  

17 c d a (12,18) (20,10) (19,11) b c PD[d,a] is updated from (12,18) to (19,11); 
pred[d,a] is updated from b to c 

18 c d b (13,17) (20,10) (18,12) d a PD[d,b] is updated from (13,17) to (18,12); 
pred[d,b] is updated from d to a 

19 d a b (18,12) (21,9) (18,12) a a  

20 d a c (14,16) (21,9) (20,10) b d PD[a,c] is updated from (14,16) to (20,10); 
pred[a,c] is updated from b to d 

21 d b a (14,16) (17,13) (19,11) c c PD[b,a] is updated from (14,16) to (17,13) 

22 d b c (14,16) (17,13) (20,10) b d PD[b,c] is updated from (14,16) to (17,13); 
pred[b,c] is updated from b to d 

23 d c a (19,11) (19,11) (19,11) c c  

24 d c b (18,12) (19,11) (18,12) a a  
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3.6.2. Situation #2 
 
Suppose alternative e is added as follows: 

 
Example 6 (new): 

 
3 voters a v b v d v e v c 
5 voters a v d v e v b v c 
1 voter a v d v e v c v b 
2 voters b v a v d v e v c 
2 voters b v d v e v c v a 
4 voters c v a v b v d v e 
6 voters c v b v a v d v e 
2 voters d v b v e v c v a 
5 voters d v e v c v a v b 
 
The newly added alternative e is Pareto-dominated by alternative d, 

because d v e for every voter v ∈ V. Therefore, (3.6.1) – (3.6.4) say that the 
result should not change. 

 
The pairwise matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] 

Nnew[a,*] --- 18 11 21 21 

Nnew[b,*] 12 --- 14 17 19 

Nnew[c,*] 19 16 --- 10 10 

Nnew[d,*] 9 13 20 --- 30 

Nnew[e,*] 9 11 20 0 --- 

 
The corresponding digraph looks as follows: 

 
 

a b

c

d

(18,12)

(19,11)

(16,14)

(20,10)

(21,9)

(19,11)

e

(20,10)(30,0)

(17,13)(21,9)
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (18,12), b a, (21,9), d, 
(20,10), c a, (21,9), d a, (21,9), e 

from b ... 
b, (19,11), e, 

(20,10), c, 
(19,11), a 

--- b, (19,11), e, 
(20,10), c 

b, (19,11), e, 
(20,10), c, 
(19,11), a, 
(21,9), d 

b, (19,11), e 

from c ... c, (19,11), a c, (19,11), a, 
(18,12), b --- c, (19,11), a, 

(21,9), d 
c, (19,11), a, 

(21,9), e 

from d ... d, (20,10), c, 
(19,11), a 

d, (20,10), c, 
(19,11), a, 
(18,12), b 

d, (20,10), c --- d, (30,0), e 

from e ... e, (20,10), c, 
(19,11), a 

e, (20,10), c, 
(19,11), a, 
(18,12), b 

e, (20,10), c 
e, (20,10), c, 
(19,11), a, 
(21,9), d 

--- 

 
We get new = {ac, ad, ae, ba, bc, bd, be, dc, de, ec} and new = {b}. 
 
Example 6 shows that the Schulze method, as defined in section 2.2, 

violates IPDA, as defined in (3.6.1) – (3.6.4). For example, we have           
(1) ab ∈ old and ba ∈ new, (2) cb ∈ old and bc ∈ new, (3) db ∈ old and 
bd ∈ new, (4) a ∈ old and a ∉ new, and (5) b ∉ old and b ∈ new. 

 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 60 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (14,16) (12,18) (11,19) b a  

2 a b d (17,13) (12,18) (21,9) b a  

3 a b e (19,11) (12,18) (21,9) b a  

4 a c b (16,14) (19,11) (18,12) c a PD[c,b] is updated from (16,14) to (18,12); 
pred[c,b] is updated from c to a 

5 a c d (10,20) (19,11) (21,9) c a PD[c,d] is updated from (10,20) to (19,11); 
pred[c,d] is updated from c to a 

6 a c e (10,20) (19,11) (21,9) c a PD[c,e] is updated from (10,20) to (19,11); 
pred[c,e] is updated from c to a 

7 a d b (13,17) (9,21) (18,12) d a  

8 a d c (20,10) (9,21) (11,19) d a  

9 a d e (30,0) (9,21) (21,9) d a  

10 a e b (11,19) (9,21) (18,12) e a  

11 a e c (20,10) (9,21) (11,19) e a  

12 a e d (0,30) (9,21) (21,9) e a PD[e,d] is updated from (0,30) to (9,21); 
pred[e,d] is updated from e to a 

13 b a c (11,19) (18,12) (14,16) a b PD[a,c] is updated from (11,19) to (14,16); 
pred[a,c] is updated from a to b 

14 b a d (21,9) (18,12) (17,13) a b  

15 b a e (21,9) (18,12) (19,11) a b  

16 b c a (19,11) (18,12) (12,18) c b  

17 b c d (19,11) (18,12) (17,13) a b  

18 b c e (19,11) (18,12) (19,11) a b  

19 b d a (9,21) (13,17) (12,18) d b PD[d,a] is updated from (9,21) to (12,18); 
pred[d,a] is updated from d to b 

20 b d c (20,10) (13,17) (14,16) d b  

21 b d e (30,0) (13,17) (19,11) d b  

22 b e a (9,21) (11,19) (12,18) e b PD[e,a] is updated from (9,21) to (11,19); 
pred[e,a] is updated from e to b 

23 b e c (20,10) (11,19) (14,16) e b  

24 b e d (9,21) (11,19) (17,13) a b PD[e,d] is updated from (9,21) to (11,19); 
pred[e,d] is updated from a to b 

25 c a b (18,12) (14,16) (18,12) a a  

26 c a d (21,9) (14,16) (19,11) a a  

27 c a e (21,9) (14,16) (19,11) a a  

28 c b a (12,18) (14,16) (19,11) b c PD[b,a] is updated from (12,18) to (14,16); 
pred[b,a] is updated from b to c 

29 c b d (17,13) (14,16) (19,11) b a  

30 c b e (19,11) (14,16) (19,11) b a  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (12,18) (20,10) (19,11) b c PD[d,a] is updated from (12,18) to (19,11); 
pred[d,a] is updated from b to c 

32 c d b (13,17) (20,10) (18,12) d a PD[d,b] is updated from (13,17) to (18,12); 
pred[d,b] is updated from d to a 

33 c d e (30,0) (20,10) (19,11) d a  

34 c e a (11,19) (20,10) (19,11) b c PD[e,a] is updated from (11,19) to (19,11); 
pred[e,a] is updated from b to c 

35 c e b (11,19) (20,10) (18,12) e a PD[e,b] is updated from (11,19) to (18,12); 
pred[e,b] is updated from e to a 

36 c e d (11,19) (20,10) (19,11) b a PD[e,d] is updated from (11,19) to (19,11); 
pred[e,d] is updated from b to a 

37 d a b (18,12) (21,9) (18,12) a a  

38 d a c (14,16) (21,9) (20,10) b d PD[a,c] is updated from (14,16) to (20,10); 
pred[a,c] is updated from b to d 

39 d a e (21,9) (21,9) (30,0) a d  

40 d b a (14,16) (17,13) (19,11) c c PD[b,a] is updated from (14,16) to (17,13) 

41 d b c (14,16) (17,13) (20,10) b d PD[b,c] is updated from (14,16) to (17,13); 
pred[b,c] is updated from b to d 

42 d b e (19,11) (17,13) (30,0) b d  

43 d c a (19,11) (19,11) (19,11) c c  

44 d c b (18,12) (19,11) (18,12) a a  

45 d c e (19,11) (19,11) (30,0) a d  

46 d e a (19,11) (19,11) (19,11) c c  

47 d e b (18,12) (19,11) (18,12) a a  

48 d e c (20,10) (19,11) (20,10) e d  

49 e a b (18,12) (21,9) (18,12) a a  

50 e a c (20,10) (21,9) (20,10) d e  

51 e a d (21,9) (21,9) (19,11) a a  

52 e b a (17,13) (19,11) (19,11) c c PD[b,a] is updated from (17,13) to (19,11) 

53 e b c (17,13) (19,11) (20,10) d e PD[b,c] is updated from (17,13) to (19,11); 
pred[b,c] is updated from d to e 

54 e b d (17,13) (19,11) (19,11) b a PD[b,d] is updated from (17,13) to (19,11); 
pred[b,d] is updated from b to a 

55 e c a (19,11) (19,11) (19,11) c c  

56 e c b (18,12) (19,11) (18,12) a a  

57 e c d (19,11) (19,11) (19,11) a a  

58 e d a (19,11) (30,0) (19,11) c c  

59 e d b (18,12) (30,0) (18,12) a a  

60 e d c (20,10) (30,0) (20,10) d e  
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3.7. Example 7 
 
3.7.1. Situation #1 
 
Example 7 (old): 

 
5 voters a v c v d v b 
2 voters b v c v d v a 
4 voters b v d v a v c 
2 voters c v d v a v b 
 
The pairwise matrix Nold looks as follows: 
 

 Nold[*,a] Nold[*,b] Nold[*,c] Nold[*,d] 

Nold[a,*] --- 7 9 5 

Nold[b,*] 6 --- 6 6 

Nold[c,*] 4 7 --- 9 

Nold[d,*] 8 7 4 --- 

 
The corresponding digraph looks as follows: 
 
 

 
 
 

  

a b 

c d  

(7,6) 

(9,4) (7,6) 

(8,5) (7,6) 

(9,4) 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (7,6), b a, (9,4), c a, (9,4), c, 
(9,4), d 

from b ... b, (6,7), a --- b, (6,7), c b, (6,7), d 

from c ... c, (9,4), d, 
(8,5), a c, (7,6), b --- c, (9,4), d 

from d ... d, (8,5), a d, (7,6), b d, (8,5), a, 
(9,4), c --- 

 
We get old = {ab, ac, ad, cb, cd, db} and old = {a}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (6,7) (6,7) (9,4) b a  

2 a b d (6,7) (6,7) (5,8) b a  

3 a c b (7,6) (4,9) (7,6) c a  

4 a c d (9,4) (4,9) (5,8) c a  

5 a d b (7,6) (8,5) (7,6) d a  

6 a d c (4,9) (8,5) (9,4) d a PD[d,c] is updated from (4,9) to (8,5); 
pred[d,c] is updated from d to a 

7 b a c (9,4) (7,6) (6,7) a b  

8 b a d (5,8) (7,6) (6,7) a b PD[a,d] is updated from (5,8) to (6,7); 
pred[a,d] is updated from a to b 

9 b c a (4,9) (7,6) (6,7) c b PD[c,a] is updated from (4,9) to (6,7); 
pred[c,a] is updated from c to b 

10 b c d (9,4) (7,6) (6,7) c b  

11 b d a (8,5) (7,6) (6,7) d b  

12 b d c (8,5) (7,6) (6,7) a b  

13 c a b (7,6) (9,4) (7,6) a c  

14 c a d (6,7) (9,4) (9,4) b c PD[a,d] is updated from (6,7) to (9,4); 
pred[a,d] is updated from b to c 

15 c b a (6,7) (6,7) (6,7) b b  

16 c b d (6,7) (6,7) (9,4) b c  

17 c d a (8,5) (8,5) (6,7) d b  

18 c d b (7,6) (8,5) (7,6) d c  

19 d a b (7,6) (9,4) (7,6) a d  

20 d a c (9,4) (9,4) (8,5) a a  

21 d b a (6,7) (6,7) (8,5) b d  

22 d b c (6,7) (6,7) (8,5) b a  

23 d c a (6,7) (9,4) (8,5) b d PD[c,a] is updated from (6,7) to (8,5); 
pred[c,a] is updated from b to d 

24 d c b (7,6) (9,4) (7,6) c d  
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3.7.2. Situation #2 
 
Suppose alternative e is added as follows: 

 
Example 7 (new): 

 
5 voters a v e v c v d v b 
2 voters b v c v d v a v e 
4 voters b v d v a v e v c 
2 voters c v d v a v b v e 
 
The newly added alternative e is Pareto-dominated by alternative a, 

because a v e for every voter v ∈ V. Therefore, (3.6.1) – (3.6.4) say that the 
result should not change. 

 
The pairwise matrix Nnew looks as follows: 
 

 Nnew[*,a] Nnew[*,b] Nnew[*,c] Nnew[*,d] Nnew[*,e] 

Nnew[a,*] --- 7 9 5 13 

Nnew[b,*] 6 --- 6 6 8 

Nnew[c,*] 4 7 --- 9 4 

Nnew[d,*] 8 7 4 --- 8 

Nnew[e,*] 0 5 9 5 --- 

 
The corresponding digraph looks as follows: 

 

 
 

 
 

  

e 

 d 

c 

(13,0) 

(8,5) 

(7,6) 

(7,6) 

(9,4) (8,5) 

(9,4) 

(7,6) 

(8,5) 

(9,4) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (7,6), b a, (9,4), c a, (9,4), c, 
(9,4), d a, (13,0), e 

from b ... 

b, (8,5), e, 
(9,4), c, 
(9,4), d, 
(8,5), a 

--- b, (8,5), e, 
(9,4), c 

b, (8,5), e, 
(9,4), c, 
(9,4), d 

b, (8,5), e 

from c ... c, (9,4), d, 
(8,5), a c, (7,6), b --- c, (9,4), d c, (9,4), d, 

(8,5), e 

from d ... d, (8,5), a d, (7,6), b d, (8,5), a, 
(9,4), c --- d, (8,5), e 

from e ... 
e, (9,4), c, 
(9,4), d, 
(8,5), a 

e, (9,4), c, 
(7,6), b e, (9,4), c e, (9,4), c, 

(9,4), d --- 

 
We get new = {ac, ad, ae, ba, bc, bd, be, cd, ec, ed} and new = {b}. 
 
Example 7 shows that the Schulze method, as defined in section 2.2, 

violates IPDA, as defined in (3.6.1) – (3.6.4). For example, we have           
(1) ab ∈ old and ba ∈ new, (2) cb ∈ old and bc ∈ new, (3) db ∈ old and 
bd ∈ new, (4) a ∈ old and a ∉ new, and (5) b ∉ old and b ∈ new. 

 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 60 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (6,7) (6,7) (9,4) b a  

2 a b d (6,7) (6,7) (5,8) b a  

3 a b e (8,5) (6,7) (13,0) b a  

4 a c b (7,6) (4,9) (7,6) c a  

5 a c d (9,4) (4,9) (5,8) c a  

6 a c e (4,9) (4,9) (13,0) c a  

7 a d b (7,6) (8,5) (7,6) d a  

8 a d c (4,9) (8,5) (9,4) d a PD[d,c] is updated from (4,9) to (8,5); 
pred[d,c] is updated from d to a 

9 a d e (8,5) (8,5) (13,0) d a  

10 a e b (5,8) (0,13) (7,6) e a  

11 a e c (9,4) (0,13) (9,4) e a  

12 a e d (5,8) (0,13) (5,8) e a  

13 b a c (9,4) (7,6) (6,7) a b  

14 b a d (5,8) (7,6) (6,7) a b PD[a,d] is updated from (5,8) to (6,7); 
pred[a,d] is updated from a to b 

15 b a e (13,0) (7,6) (8,5) a b  

16 b c a (4,9) (7,6) (6,7) c b PD[c,a] is updated from (4,9) to (6,7); 
pred[c,a] is updated from c to b 

17 b c d (9,4) (7,6) (6,7) c b  

18 b c e (4,9) (7,6) (8,5) c b PD[c,e] is updated from (4,9) to (7,6); 
pred[c,e] is updated from c to b 

19 b d a (8,5) (7,6) (6,7) d b  

20 b d c (8,5) (7,6) (6,7) a b  

21 b d e (8,5) (7,6) (8,5) d b  

22 b e a (0,13) (5,8) (6,7) e b PD[e,a] is updated from (0,13) to (5,8); 
pred[e,a] is updated from e to b 

23 b e c (9,4) (5,8) (6,7) e b  

24 b e d (5,8) (5,8) (6,7) e b  

25 c a b (7,6) (9,4) (7,6) a c  

26 c a d (6,7) (9,4) (9,4) b c PD[a,d] is updated from (6,7) to (9,4); 
pred[a,d] is updated from b to c 

27 c a e (13,0) (9,4) (7,6) a b  

28 c b a (6,7) (6,7) (6,7) b b  

29 c b d (6,7) (6,7) (9,4) b c  

30 c b e (8,5) (6,7) (7,6) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (8,5) (8,5) (6,7) d b  

32 c d b (7,6) (8,5) (7,6) d c  

33 c d e (8,5) (8,5) (7,6) d b  

34 c e a (5,8) (9,4) (6,7) b b PD[e,a] is updated from (5,8) to (6,7) 

35 c e b (5,8) (9,4) (7,6) e c PD[e,b] is updated from (5,8) to (7,6); 
pred[e,b] is updated from e to c 

36 c e d (5,8) (9,4) (9,4) e c PD[e,d] is updated from (5,8) to (9,4); 
pred[e,d] is updated from e to c 

37 d a b (7,6) (9,4) (7,6) a d  

38 d a c (9,4) (9,4) (8,5) a a  

39 d a e (13,0) (9,4) (8,5) a d  

40 d b a (6,7) (6,7) (8,5) b d  

41 d b c (6,7) (6,7) (8,5) b a  

42 d b e (8,5) (6,7) (8,5) b d  

43 d c a (6,7) (9,4) (8,5) b d PD[c,a] is updated from (6,7) to (8,5); 
pred[c,a] is updated from b to d 

44 d c b (7,6) (9,4) (7,6) c d  

45 d c e (7,6) (9,4) (8,5) b d PD[c,e] is updated from (7,6) to (8,5); 
pred[c,e] is updated from b to d 

46 d e a (6,7) (9,4) (8,5) b d PD[e,a] is updated from (6,7) to (8,5); 
pred[e,a] is updated from b to d 

47 d e b (7,6) (9,4) (7,6) c d  

48 d e c (9,4) (9,4) (8,5) e a  

49 e a b (7,6) (13,0) (7,6) a c  

50 e a c (9,4) (13,0) (9,4) a e  

51 e a d (9,4) (13,0) (9,4) c c  

52 e b a (6,7) (8,5) (8,5) b d PD[b,a] is updated from (6,7) to (8,5); 
pred[b,a] is updated from b to d 

53 e b c (6,7) (8,5) (9,4) b e PD[b,c] is updated from (6,7) to (8,5); 
pred[b,c] is updated from b to e 

54 e b d (6,7) (8,5) (9,4) b c PD[b,d] is updated from (6,7) to (8,5); 
pred[b,d] is updated from b to c 

55 e c a (8,5) (8,5) (8,5) d d  

56 e c b (7,6) (8,5) (7,6) c c  

57 e c d (9,4) (8,5) (9,4) c c  

58 e d a (8,5) (8,5) (8,5) d d  

59 e d b (7,6) (8,5) (7,6) d c  

60 e d c (8,5) (8,5) (9,4) a e  
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3.8. Example 8 
 
When each voter v ∈ V casts a linear order v on A, then all definitions 

for D, that satisfy presumption (2.1.1), are equivalent. However, when some 
voters cast non-linear orders, then there are many possible definitions for the 
strength of a link. The following example illustrates how the different 
definitions for the strength of a link can lead to different winners. 
 
Example 8: 

 
6 voters a v b v c v d 
8 voters a ≈v b v c ≈v d 
8 voters a ≈v c v b ≈v d 
18 voters a ≈v c v d v b 
8 voters a ≈v c ≈v d v b 
40 voters b v a ≈v c ≈v d 
4 voters c v b v d v a 
9 voters c v d v a v b 
8 voters c ≈v d v a ≈v b 
14 voters d v a v b v c 
11 voters d v b v c v a 
4 voters d v c v a v b 
 
The pairwise matrix N looks as follows: 
 

 N[*,a] N[*,b] N[*,c] N[*,d] 

N[a,*] --- 67 28 40 

N[b,*] 55 --- 79 58 

N[c,*] 36 59 --- 45 

N[d,*] 50 72 29 --- 

 
The corresponding digraph looks as follows: 
 
 

 
  

a b 

c d  

(67,55) 

(36,28) 

(79,59) 

(45,29) 

(50,40) 

(72,58) 
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a) margin 
 

We get: (N[b,c],N[c,b]) margin (N[c,d],N[d,c]) margin (N[d,b],N[b,d]) 
margin (N[a,b],N[b,a]) margin (N[d,a],N[a,d]) margin (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a margin of N[b,c] – N[c,b] = 20 
cd with a margin of N[c,d] – N[d,c] = 16 
db with a margin of N[d,b] – N[b,d] = 14 
ab with a margin of N[a,b] – N[b,a] = 12 
da with a margin of N[d,a] – N[a,d] = 10 
ca with a margin of N[c,a] – N[a,c] = 8 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get margin = {ab, ac, ad, bc, bd, cd} and margin = {a}. 
 

Suppose, the strongest paths are calculated with the Floyd-Warshall 
algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• Pmargin[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pmargin[j,k] Pmargin[j,i] Pmargin[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a Pmargin[b,d] is updated from (58,72) to 
(55,67); pred[b,d] is updated from b to a 

3 a c b (59,79) (36,28) (67,55) c a Pmargin[c,b] is updated from (59,79) to 
(36,28); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pmargin[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pmargin[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (55,67) a a  

9 b c a (36,28) (36,28) (55,67) c b  

10 b c d (45,29) (36,28) (55,67) c a  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pmargin[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (36,28) a a  

14 c a d (40,50) (67,55) (45,29) a c Pmargin[a,d] is updated from (40,50) to 
(67,55); pred[a,d] is updated from a to c 

15 c b a (55,67) (79,59) (36,28) b c Pmargin[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (55,67) (79,59) (45,29) a c Pmargin[b,d] is updated from (55,67) to 
(45,29); pred[b,d] is updated from a to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (36,28) d a  

19 d a b (67,55) (67,55) (72,58) a d  

20 d a c (67,55) (67,55) (72,58) b b  

21 d b a (36,28) (45,29) (50,40) c d Pmargin[b,a] is updated from (36,28) to 
(50,40); pred[b,a] is updated from c to d 

22 d b c (79,59) (45,29) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d Pmargin[c,a] is updated from (36,28) to 
(50,40); pred[c,a] is updated from c to d 

24 d c b (36,28) (45,29) (72,58) a d Pmargin[c,b] is updated from (36,28) to 
(72,58); pred[c,b] is updated from a to d 
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b) ratio 
 

We get: (N[c,d],N[d,c]) ratio (N[b,c],N[c,b]) ratio (N[c,a],N[a,c]) ratio 
(N[d,a],N[a,d]) ratio (N[d,b],N[b,d]) ratio (N[a,b],N[b,a]). 
 
The pairwise victories are: 
 

cd with a ratio of N[c,d] / N[d,c] = 1.552 
bc with a ratio of N[b,c] / N[c,b] = 1.339 
ca with a ratio of N[c,a] / N[a,c] = 1.286 
da with a ratio of N[d,a] / N[a,d] = 1.250 
db with a ratio of N[d,b] / N[b,d] = 1.241 
ab with a ratio of N[a,b] / N[b,a] = 1.218 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get ratio = {ba, bc, bd, ca, cd, da} and ratio = {b}. 
 

Suppose, the strongest paths are calculated with the Floyd-Warshall 
algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• Pratio[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pratio[j,k] Pratio[j,i] Pratio[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a  

3 a c b (59,79) (36,28) (67,55) c a Pratio[c,b] is updated from (59,79) to 
(67,55); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pratio[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pratio[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (58,72) a b Pratio[a,d] is updated from (40,50) to 
(58,72); pred[a,d] is updated from a to b 

9 b c a (36,28) (67,55) (55,67) c b  

10 b c d (45,29) (67,55) (58,72) c b  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pratio[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (67,55) a a  

14 c a d (58,72) (67,55) (45,29) b c Pratio[a,d] is updated from (58,72) to 
(67,55); pred[a,d] is updated from b to c 

15 c b a (55,67) (79,59) (36,28) b c Pratio[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (58,72) (79,59) (45,29) b c Pratio[b,d] is updated from (58,72) to 
(79,59); pred[b,d] is updated from b to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (67,55) d a  

19 d a b (67,55) (67,55) (72,58) a d  

20 d a c (67,55) (67,55) (72,58) b b  

21 d b a (36,28) (79,59) (50,40) c d  

22 d b c (79,59) (79,59) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d  

24 d c b (67,55) (45,29) (72,58) a d Pratio[c,b] is updated from (67,55) to 
(72,58); pred[c,b] is updated from a to d 
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c) winning votes 
 

We get: (N[b,c],N[c,b]) win (N[d,b],N[b,d]) win (N[a,b],N[b,a]) win 
(N[d,a],N[a,d]) win (N[c,d],N[d,c]) win (N[c,a],N[a,c]). 
 
The pairwise victories are: 
 

bc with a support of N[b,c] = 79 
db with a support of N[d,b] = 72 
ab with a support of N[a,b] = 67 
da with a support of N[d,a] = 50 
cd with a support of N[c,d] = 45 
ca with a support of N[c,a] = 36 
 

The strongest paths are: 
 

 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... 
b, (79,59), c, 
(45,29), d, 
(50,40), a 

--- b, (79,59), c b, (79,59), c, 
(45,29), d 

from c ... c, (45,29), d, 
(50,40), a 

c, (45,29), d, 
(72,58), b --- c, (45,29), d 

from d ... d, (50,40), a d, (72,58), b d, (72,58), b, 
(79,59), c --- 

 
We get win = {ab, ac, bc, da, db, dc} and win = {d}. 
 

Suppose, the strongest paths are calculated with the Floyd-Warshall 
algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• Pwin[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Pwin[j,k] Pwin[j,i] Pwin[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a Pwin[b,d] is updated from (58,72) to 
(55,67); pred[b,d] is updated from b to a 

3 a c b (59,79) (36,28) (67,55) c a Pwin[c,b] is updated from (59,79) to 
(36,28); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a  

6 a d c (29,45) (50,40) (28,36) d a Pwin[d,c] is updated from (29,45) to 
(28,36); pred[d,c] is updated from d to a 

7 b a c (28,36) (67,55) (79,59) a b Pwin[a,c] is updated from (28,36) to 
(67,55); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (55,67) a a  

9 b c a (36,28) (36,28) (55,67) c b  

10 b c d (45,29) (36,28) (55,67) c a  

11 b d a (50,40) (72,58) (55,67) d b  

12 b d c (28,36) (72,58) (79,59) a b Pwin[d,c] is updated from (28,36) to 
(72,58); pred[d,c] is updated from a to b 

13 c a b (67,55) (67,55) (36,28) a a  

14 c a d (40,50) (67,55) (45,29) a c Pwin[a,d] is updated from (40,50) to 
(45,29); pred[a,d] is updated from a to c 

15 c b a (55,67) (79,59) (36,28) b c Pwin[b,a] is updated from (55,67) to 
(36,28); pred[b,a] is updated from b to c 

16 c b d (55,67) (79,59) (45,29) a c Pwin[b,d] is updated from (55,67) to 
(45,29); pred[b,d] is updated from a to c 

17 c d a (50,40) (72,58) (36,28) d c  

18 c d b (72,58) (72,58) (36,28) d a  

19 d a b (67,55) (45,29) (72,58) a d  

20 d a c (67,55) (45,29) (72,58) b b  

21 d b a (36,28) (45,29) (50,40) c d Pwin[b,a] is updated from (36,28) to 
(45,29); pred[b,a] is updated from c to d 

22 d b c (79,59) (45,29) (72,58) b b  

23 d c a (36,28) (45,29) (50,40) c d Pwin[c,a] is updated from (36,28) to 
(45,29); pred[c,a] is updated from c to d 

24 d c b (36,28) (45,29) (72,58) a d Pwin[c,b] is updated from (36,28) to 
(45,29); pred[c,b] is updated from a to d 
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d) losing votes 
 

We get: (N[c,a],N[a,c]) los (N[c,d],N[d,c]) los (N[d,a],N[a,d]) los 
(N[a,b],N[b,a]) los (N[d,b],N[b,d]) los (N[b,c],N[c,b]). 
 
The pairwise victories are: 
 

ca with an opposition of N[a,c] = 28 
cd with an opposition of N[d,c] = 29 
da with an opposition of N[a,d] = 40 
ab with an opposition of N[b,a] = 55 
db with an opposition of N[b,d] = 58 
bc with an opposition of N[c,b] = 59 

 
The strongest paths are: 

 
 ... to a ... to b ... to c ... to d 

from a ... --- a, (67,55), b a, (67,55), b, 
(79,59), c 

a, (67,55), b, 
(79,59), c, 
(45,29), d 

from b ... b, (79,59), c, 
(36,28), a --- b, (79,59), c b, (79,59), c, 

(45,29), d 

from c ... c, (36,28), a c, (36,28), a, 
(67,55), b --- c, (45,29), d 

from d ... d, (50,40), a d, (50,40), a 
(67,55), b 

d, (50,40), a 
(67,55), b, 
(79,59), c 

--- 

 
We get los = {ab, ca, cb, cd, da, db} and los = {c}. 
 

Suppose, the strongest paths are calculated with the Floyd-Warshall 
algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 24 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• Plos[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k Plos[j,k] Plos[j,i] Plos[i,k] pred[j,k] pred[i,k] result 

1 a b c (79,59) (55,67) (28,36) b a  

2 a b d (58,72) (55,67) (40,50) b a  

3 a c b (59,79) (36,28) (67,55) c a Plos[c,b] is updated from (59,79) to 
(67,55); pred[c,b] is updated from c to a 

4 a c d (45,29) (36,28) (40,50) c a  

5 a d b (72,58) (50,40) (67,55) d a Plos[d,b] is updated from (72,58) to 
(67,55); pred[d,b] is updated from d to a 

6 a d c (29,45) (50,40) (28,36) d a  

7 b a c (28,36) (67,55) (79,59) a b Plos[a,c] is updated from (28,36) to 
(79,59); pred[a,c] is updated from a to b 

8 b a d (40,50) (67,55) (58,72) a b Plos[a,d] is updated from (40,50) to 
(58,72); pred[a,d] is updated from a to b 

9 b c a (36,28) (67,55) (55,67) c b  

10 b c d (45,29) (67,55) (58,72) c b  

11 b d a (50,40) (67,55) (55,67) d b  

12 b d c (29,45) (67,55) (79,59) d b Plos[d,c] is updated from (29,45) to 
(79,59); pred[d,c] is updated from d to b 

13 c a b (67,55) (79,59) (67,55) a a  

14 c a d (58,72) (79,59) (45,29) b c Plos[a,d] is updated from (58,72) to 
(79,59); pred[a,d] is updated from b to c 

15 c b a (55,67) (79,59) (36,28) b c Plos[b,a] is updated from (55,67) to 
(79,59); pred[b,a] is updated from b to c 

16 c b d (58,72) (79,59) (45,29) b c Plos[b,d] is updated from (58,72) to 
(79,59); pred[b,d] is updated from b to c 

17 c d a (50,40) (79,59) (36,28) d c  

18 c d b (67,55) (79,59) (67,55) a a  

19 d a b (67,55) (79,59) (67,55) a a  

20 d a c (79,59) (79,59) (79,59) b b  

21 d b a (79,59) (79,59) (50,40) c d  

22 d b c (79,59) (79,59) (79,59) b b  

23 d c a (36,28) (45,29) (50,40) c d  

24 d c b (67,55) (45,29) (67,55) a a  
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3.9. Example 9 
 

Example 9: 
 
9  voters a v d v b v e v c 
6  voters b v c v a v d v e 
5  voters b v c v d v e v a 
2  voters c v d v b v e v a 
6  voters d v e v c v b v a 
14  voters e v a v c v b v d 
2  voters e v c v a v b v d 
1  voter e v d v a v c v b 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 26 24 31 15 

N[b,*] 19 --- 20 27 22 

N[c,*] 21 25 --- 29 13 

N[d,*] 14 18 16 --- 28 

N[e,*] 30 23 32 17 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d 

c 

(30,15) 

(23,22) 

(27,18) 

(26,19) 

(29,16) (28,17) 

(32,13) 

(25,20) 

(31,14) 

(24,21) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- a, (26,19), b 
a, (31,14), d, 

(28,17), e, 
(32,13), c 

a, (31,14), d a, (31,14), d, 
(28,17), e 

from b ... 
b, (27,18), d, 

(28,17), e, 
(30,15), a 

--- 
b, (27,18), d, 

(28,17), e, 
(32,13), c 

b, (27,18), d b, (27,18), d, 
(28,17), e 

from c ... 
c, (29,16), d, 

(28,17), e, 
(30,15), a 

c, (29,16), d, 
(28,17), e, 
(30,15), a, 
(26,19), b 

--- c, (29,16), d c, (29,16), d, 
(28,17), e 

from d ... d, (28,17), e, 
(30,15), a 

d, (28,17), e, 
(30,15), a, 
(26,19), b 

d, (28,17), e, 
(32,13), c --- d, (28,17), e 

from e ... e, (30,15), a e, (30,15), a, 
(26,19), b e, (32,13), c e, (30,15), a, 

(31,14), d --- 

 
We get  = {ad, ba, bc, bd, be, cd, ea, ec, ed} and  = {b}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 60 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (20,25) (19,26) (24,21) b a  

2 a b d (27,18) (19,26) (31,14) b a  

3 a b e (22,23) (19,26) (15,30) b a  

4 a c b (25,20) (21,24) (26,19) c a  

5 a c d (29,16) (21,24) (31,14) c a  

6 a c e (13,32) (21,24) (15,30) c a PD[c,e] is updated from (13,32) to (15,30); 
pred[c,e] is updated from c to a 

7 a d b (18,27) (14,31) (26,19) d a  

8 a d c (16,29) (14,31) (24,21) d a  

9 a d e (28,17) (14,31) (15,30) d a  

10 a e b (23,22) (30,15) (26,19) e a PD[e,b] is updated from (23,22) to (26,19); 
pred[e,b] is updated from e to a 

11 a e c (32,13) (30,15) (24,21) e a  

12 a e d (17,28) (30,15) (31,14) e a PD[e,d] is updated from (17,28) to (30,15); 
pred[e,d] is updated from e to a 

13 b a c (24,21) (26,19) (20,25) a b  

14 b a d (31,14) (26,19) (27,18) a b  

15 b a e (15,30) (26,19) (22,23) a b PD[a,e] is updated from (15,30) to (22,23); 
pred[a,e] is updated from a to b 

16 b c a (21,24) (25,20) (19,26) c b  

17 b c d (29,16) (25,20) (27,18) c b  

18 b c e (15,30) (25,20) (22,23) a b PD[c,e] is updated from (15,30) to (22,23); 
pred[c,e] is updated from a to b 

19 b d a (14,31) (18,27) (19,26) d b PD[d,a] is updated from (14,31) to (18,27); 
pred[d,a] is updated from d to b 

20 b d c (16,29) (18,27) (20,25) d b PD[d,c] is updated from (16,29) to (18,27); 
pred[d,c] is updated from d to b 

21 b d e (28,17) (18,27) (22,23) d b  

22 b e a (30,15) (26,19) (19,26) e b  

23 b e c (32,13) (26,19) (20,25) e b  

24 b e d (30,15) (26,19) (27,18) a b  

25 c a b (26,19) (24,21) (25,20) a c  

26 c a d (31,14) (24,21) (29,16) a c  

27 c a e (22,23) (24,21) (22,23) b b  

28 c b a (19,26) (20,25) (21,24) b c PD[b,a] is updated from (19,26) to (20,25); 
pred[b,a] is updated from b to c 

29 c b d (27,18) (20,25) (29,16) b c  

30 c b e (22,23) (20,25) (22,23) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (18,27) (18,27) (21,24) b c  

32 c d b (18,27) (18,27) (25,20) d c  

33 c d e (28,17) (18,27) (22,23) d b  

34 c e a (30,15) (32,13) (21,24) e c  

35 c e b (26,19) (32,13) (25,20) a c  

36 c e d (30,15) (32,13) (29,16) a c  

37 d a b (26,19) (31,14) (18,27) a d  

38 d a c (24,21) (31,14) (18,27) a b  

39 d a e (22,23) (31,14) (28,17) b d PD[a,e] is updated from (22,23) to (28,17); 
pred[a,e] is updated from b to d 

40 d b a (20,25) (27,18) (18,27) c b  

41 d b c (20,25) (27,18) (18,27) b b  

42 d b e (22,23) (27,18) (28,17) b d PD[b,e] is updated from (22,23) to (27,18); 
pred[b,e] is updated from b to d 

43 d c a (21,24) (29,16) (18,27) c b  

44 d c b (25,20) (29,16) (18,27) c d  

45 d c e (22,23) (29,16) (28,17) b d PD[c,e] is updated from (22,23) to (28,17); 
pred[c,e] is updated from b to d 

46 d e a (30,15) (30,15) (18,27) e b  

47 d e b (26,19) (30,15) (18,27) a d  

48 d e c (32,13) (30,15) (18,27) e b  

49 e a b (26,19) (28,17) (26,19) a a  

50 e a c (24,21) (28,17) (32,13) a e PD[a,c] is updated from (24,21) to (28,17); 
pred[a,c] is updated from a to e 

51 e a d (31,14) (28,17) (30,15) a a  

52 e b a (20,25) (27,18) (30,15) c e PD[b,a] is updated from (20,25) to (27,18); 
pred[b,a] is updated from c to e 

53 e b c (20,25) (27,18) (32,13) b e PD[b,c] is updated from (20,25) to (27,18); 
pred[b,c] is updated from b to e 

54 e b d (27,18) (27,18) (30,15) b a  

55 e c a (21,24) (28,17) (30,15) c e PD[c,a] is updated from (21,24) to (28,17); 
pred[c,a] is updated from c to e 

56 e c b (25,20) (28,17) (26,19) c a PD[c,b] is updated from (25,20) to (26,19); 
pred[c,b] is updated from c to a 

57 e c d (29,16) (28,17) (30,15) c a  

58 e d a (18,27) (28,17) (30,15) b e PD[d,a] is updated from (18,27) to (28,17); 
pred[d,a] is updated from b to e 

59 e d b (18,27) (28,17) (26,19) d a PD[d,b] is updated from (18,27) to (26,19); 
pred[d,b] is updated from d to a 

60 e d c (18,27) (28,17) (32,13) b e PD[d,c] is updated from (18,27) to (28,17); 
pred[d,c] is updated from b to e 
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3.10. Example 10 
 

Example 10: 
 

9  voters a v d v b v e v c 
1  voter b v a v c v e v d 
6  voters c v b v a v d v e 
2  voters c v d v b v e v a 
5  voters c v d v e v a v b 
6  voters d v e v c v a v b 
14  voters e v b v a v c v d 
2  voters e v b v c v a v d 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 20 24 32 16 

N[b,*] 25 --- 26 23 18 

N[c,*] 21 19 --- 30 14 

N[d,*] 13 22 15 --- 28 

N[e,*] 29 27 31 17 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d  

c 

(29,16) 

(27,18) 

(23,22) 

(25,20) 

(30,15) (28,17) 

(31,14) 

(26,19) 

(32,13) 

(24,21) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- 
a, (32,13), d, 

(28,17), e, 
(27,18), b 

a, (32,13), d, 
(28,17), e, 
(31,14), c 

a, (32,13), d a, (32,13), d, 
(28,17), e 

from b ... 

b, (26,19), c, 
(30,15), d, 
(28,17), e, 
(29,16), a 

--- b, (26,19), c b, (26,19), c, 
(30,15), d 

b, (26,19), c, 
(30,15), d, 
(28,17), e 

from c ... 
c, (30,15), d, 

(28,17), e, 
(29,16), a 

c, (30,15), d, 
(28,17), e, 
(27,18), b 

--- c, (30,15), d c, (30,15), d, 
(28,17), e 

from d ... d, (28,17), e, 
(29,16), a 

d, (28,17), e, 
(27,18), b 

d, (28,17), e, 
(31,14), c --- d, (28,17), e 

from e ... e, (29,16), a e, (27,18), b e, (31,14), c e, (31,14), c, 
(30,15), d --- 

 
We get  = {ab, ad, cb, cd, db, ea, eb, ec, ed} and  = {e}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 60 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (26,19) (25,20) (24,21) b a  

2 a b d (23,22) (25,20) (32,13) b a PD[b,d] is updated from (23,22) to (25,20); 
pred[b,d] is updated from b to a 

3 a b e (18,27) (25,20) (16,29) b a  

4 a c b (19,26) (21,24) (20,25) c a PD[c,b] is updated from (19,26) to (20,25); 
pred[c,b] is updated from c to a 

5 a c d (30,15) (21,24) (32,13) c a  

6 a c e (14,31) (21,24) (16,29) c a PD[c,e] is updated from (14,31) to (16,29); 
pred[c,e] is updated from c to a 

7 a d b (22,23) (13,32) (20,25) d a  

8 a d c (15,30) (13,32) (24,21) d a  

9 a d e (28,17) (13,32) (16,29) d a  

10 a e b (27,18) (29,16) (20,25) e a  

11 a e c (31,14) (29,16) (24,21) e a  

12 a e d (17,28) (29,16) (32,13) e a PD[e,d] is updated from (17,28) to (29,16); 
pred[e,d] is updated from e to a 

13 b a c (24,21) (20,25) (26,19) a b  

14 b a d (32,13) (20,25) (25,20) a a  

15 b a e (16,29) (20,25) (18,27) a b PD[a,e] is updated from (16,29) to (18,27); 
pred[a,e] is updated from a to b 

16 b c a (21,24) (20,25) (25,20) c b  

17 b c d (30,15) (20,25) (25,20) c a  

18 b c e (16,29) (20,25) (18,27) a b PD[c,e] is updated from (16,29) to (18,27); 
pred[c,e] is updated from a to b 

19 b d a (13,32) (22,23) (25,20) d b PD[d,a] is updated from (13,32) to (22,23); 
pred[d,a] is updated from d to b 

20 b d c (15,30) (22,23) (26,19) d b PD[d,c] is updated from (15,30) to (22,23); 
pred[d,c] is updated from d to b 

21 b d e (28,17) (22,23) (18,27) d b  

22 b e a (29,16) (27,18) (25,20) e b  

23 b e c (31,14) (27,18) (26,19) e b  

24 b e d (29,16) (27,18) (25,20) a a  

25 c a b (20,25) (24,21) (20,25) a a  

26 c a d (32,13) (24,21) (30,15) a c  

27 c a e (18,27) (24,21) (18,27) b b  

28 c b a (25,20) (26,19) (21,24) b c  

29 c b d (25,20) (26,19) (30,15) a c PD[b,d] is updated from (25,20) to (26,19); 
pred[b,d] is updated from a to c 

30 c b e (18,27) (26,19) (18,27) b b  
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (22,23) (22,23) (21,24) b c  

32 c d b (22,23) (22,23) (20,25) d a  

33 c d e (28,17) (22,23) (18,27) d b  

34 c e a (29,16) (31,14) (21,24) e c  

35 c e b (27,18) (31,14) (20,25) e a  

36 c e d (29,16) (31,14) (30,15) a c PD[e,d] is updated from (29,16) to (30,15); 
pred[e,d] is updated from a to c 

37 d a b (20,25) (32,13) (22,23) a d PD[a,b] is updated from (20,25) to (22,23); 
pred[a,b] is updated from a to d 

38 d a c (24,21) (32,13) (22,23) a b  

39 d a e (18,27) (32,13) (28,17) b d PD[a,e] is updated from (18,27) to (28,17); 
pred[a,e] is updated from b to d 

40 d b a (25,20) (26,19) (22,23) b b  

41 d b c (26,19) (26,19) (22,23) b b  

42 d b e (18,27) (26,19) (28,17) b d PD[b,e] is updated from (18,27) to (26,19); 
pred[b,e] is updated from b to d 

43 d c a (21,24) (30,15) (22,23) c b PD[c,a] is updated from (21,24) to (22,23); 
pred[c,a] is updated from c to b 

44 d c b (20,25) (30,15) (22,23) a d PD[c,b] is updated from (20,25) to (22,23); 
pred[c,b] is updated from a to d 

45 d c e (18,27) (30,15) (28,17) b d PD[c,e] is updated from (18,27) to (28,17); 
pred[c,e] is updated from b to d 

46 d e a (29,16) (30,15) (22,23) e b  

47 d e b (27,18) (30,15) (22,23) e d  

48 d e c (31,14) (30,15) (22,23) e b  

49 e a b (22,23) (28,17) (27,18) d e PD[a,b] is updated from (22,23) to (27,18); 
pred[a,b] is updated from d to e 

50 e a c (24,21) (28,17) (31,14) a e PD[a,c] is updated from (24,21) to (28,17); 
pred[a,c] is updated from a to e 

51 e a d (32,13) (28,17) (30,15) a c  

52 e b a (25,20) (26,19) (29,16) b e PD[b,a] is updated from (25,20) to (26,19); 
pred[b,a] is updated from b to e 

53 e b c (26,19) (26,19) (31,14) b e  

54 e b d (26,19) (26,19) (30,15) c c  

55 e c a (22,23) (28,17) (29,16) b e PD[c,a] is updated from (22,23) to (28,17); 
pred[c,a] is updated from b to e 

56 e c b (22,23) (28,17) (27,18) d e PD[c,b] is updated from (22,23) to (27,18); 
pred[c,b] is updated from d to e 

57 e c d (30,15) (28,17) (30,15) c c  

58 e d a (22,23) (28,17) (29,16) b e PD[d,a] is updated from (22,23) to (28,17); 
pred[d,a] is updated from b to e 

59 e d b (22,23) (28,17) (27,18) d e PD[d,b] is updated from (22,23) to (27,18); 
pred[d,b] is updated from d to e 

60 e d c (22,23) (28,17) (31,14) b e PD[d,c] is updated from (22,23) to (28,17); 
pred[d,c] is updated from b to e 
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3.11. Example 11 
 

Example 11: 
 

5  voters a v c v b v e v d 
5  voters a v d v e v c v b 
8  voters b v e v d v a v c 
3  voters c v a v b v e v d 
7  voters c v a v e v b v d 
2  voters c v b v a v d v e 
7  voters d v c v e v b v a 
8  voters e v b v a v d v c 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] N[*,d] N[*,e] 

N[a,*] --- 20 26 30 22 

N[b,*] 25 --- 16 33 18 

N[c,*] 19 29 --- 17 24 

N[d,*] 15 12 28 --- 14 

N[e,*] 23 27 21 31 --- 

 
The corresponding digraph looks as follows: 

 

 
  

e 

 d  

c 

(23,22) 

(27,18) 

(33,12) 

(25,20) 

(28,17) (31,14) 

(24,21) 

(29,16) 

(30,15) 

(26,19) 

  b   a 
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The strongest paths are: 
 

 ... to a ... to b ... to c ... to d ... to e 

from a ... --- 
a, (30,15), d, 

(28,17), c, 
(29,16), b 

a, (30,15), d, 
(28,17), c a, (30,15), d 

a, (30,15), d, 
(28,17), c, 
(24,21), e 

from b ... b, (25,20), a --- b, (33,12), d, 
(28,17), c b, (33,12), d 

b, (33,12), d, 
(28,17), c, 
(24,21), e 

from c ... c, (29,16), b, 
(25,20), a c, (29,16), b --- c, (29,16), b, 

(33,12), d c, (24,21), e 

from d ... 
d, (28,17), c, 
(29,16), b, 
(25,20), a 

d, (28,17), c, 
(29,16), b d, (28,17), c --- d, (28,17), c, 

(24,21), e 

from e ... 

e, (31,14), d, 
(28,17), c, 
(29,16), b, 
(25,20), a 

e, (31,14), d, 
(28,17), c, 
(29,16), b 

e, (31,14), d, 
(28,17), c e, (31,14), d --- 

 
We get  = {ab, ac, ad, bd, cb, cd, ea, eb, ec, ed} and  = {e}. 
 
Suppose, the strongest paths are calculated with the Floyd-Warshall 

algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 60 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (16,29) (25,20) (26,19) b a PD[b,c] is updated from (16,29) to (25,20); 
pred[b,c] is updated from b to a 

2 a b d (33,12) (25,20) (30,15) b a  

3 a b e (18,27) (25,20) (22,23) b a PD[b,e] is updated from (18,27) to (22,23); 
pred[b,e] is updated from b to a 

4 a c b (29,16) (19,26) (20,25) c a  

5 a c d (17,28) (19,26) (30,15) c a PD[c,d] is updated from (17,28) to (19,26); 
pred[c,d] is updated from c to a 

6 a c e (24,21) (19,26) (22,23) c a  

7 a d b (12,33) (15,30) (20,25) d a PD[d,b] is updated from (12,33) to (15,30); 
pred[d,b] is updated from d to a 

8 a d c (28,17) (15,30) (26,19) d a  

9 a d e (14,31) (15,30) (22,23) d a PD[d,e] is updated from (14,31) to (15,30); 
pred[d,e] is updated from d to a 

10 a e b (27,18) (23,22) (20,25) e a  

11 a e c (21,24) (23,22) (26,19) e a PD[e,c] is updated from (21,24) to (23,22); 
pred[e,c] is updated from e to a 

12 a e d (31,14) (23,22) (30,15) e a  

13 b a c (26,19) (20,25) (25,20) a a  

14 b a d (30,15) (20,25) (33,12) a b  

15 b a e (22,23) (20,25) (22,23) a a  

16 b c a (19,26) (29,16) (25,20) c b PD[c,a] is updated from (19,26) to (25,20); 
pred[c,a] is updated from c to b 

17 b c d (19,26) (29,16) (33,12) a b PD[c,d] is updated from (19,26) to (29,16); 
pred[c,d] is updated from a to b 

18 b c e (24,21) (29,16) (22,23) c a  

19 b d a (15,30) (15,30) (25,20) d b  

20 b d c (28,17) (15,30) (25,20) d a  

21 b d e (15,30) (15,30) (22,23) a a  

22 b e a (23,22) (27,18) (25,20) e b PD[e,a] is updated from (23,22) to (25,20); 
pred[e,a] is updated from e to b 

23 b e c (23,22) (27,18) (25,20) a a PD[e,c] is updated from (23,22) to (25,20) 

24 b e d (31,14) (27,18) (33,12) e b  

25 c a b (20,25) (26,19) (29,16) a c PD[a,b] is updated from (20,25) to (26,19); 
pred[a,b] is updated from a to c 

26 c a d (30,15) (26,19) (29,16) a b  

27 c a e (22,23) (26,19) (24,21) a c PD[a,e] is updated from (22,23) to (24,21); 
pred[a,e] is updated from a to c 

28 c b a (25,20) (25,20) (25,20) b b  

29 c b d (33,12) (25,20) (29,16) b b  

30 c b e (22,23) (25,20) (24,21) a c PD[b,e] is updated from (22,23) to (24,21); 
pred[b,e] is updated from a to c 
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 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

31 c d a (15,30) (28,17) (25,20) d b PD[d,a] is updated from (15,30) to (25,20); 
pred[d,a] is updated from d to b 

32 c d b (15,30) (28,17) (29,16) a c PD[d,b] is updated from (15,30) to (28,17); 
pred[d,b] is updated from a to c 

33 c d e (15,30) (28,17) (24,21) a c PD[d,e] is updated from (15,30) to (24,21); 
pred[d,e] is updated from a to c 

34 c e a (25,20) (25,20) (25,20) b b  

35 c e b (27,18) (25,20) (29,16) e c  

36 c e d (31,14) (25,20) (29,16) e b  

37 d a b (26,19) (30,15) (28,17) c c PD[a,b] is updated from (26,19) to (28,17) 

38 d a c (26,19) (30,15) (28,17) a d PD[a,c] is updated from (26,19) to (28,17); 
pred[a,c] is updated from a to d 

39 d a e (24,21) (30,15) (24,21) c c  

40 d b a (25,20) (33,12) (25,20) b b  

41 d b c (25,20) (33,12) (28,17) a d PD[b,c] is updated from (25,20) to (28,17); 
pred[b,c] is updated from a to d 

42 d b e (24,21) (33,12) (24,21) c c  

43 d c a (25,20) (29,16) (25,20) b b  

44 d c b (29,16) (29,16) (28,17) c c  

45 d c e (24,21) (29,16) (24,21) c c  

46 d e a (25,20) (31,14) (25,20) b b  

47 d e b (27,18) (31,14) (28,17) e c PD[e,b] is updated from (27,18) to (28,17); 
pred[e,b] is updated from e to c 

48 d e c (25,20) (31,14) (28,17) a d PD[e,c] is updated from (25,20) to (28,17); 
pred[e,c] is updated from a to d 

49 e a b (28,17) (24,21) (28,17) c c  

50 e a c (28,17) (24,21) (28,17) d d  

51 e a d (30,15) (24,21) (31,14) a e  

52 e b a (25,20) (24,21) (25,20) b b  

53 e b c (28,17) (24,21) (28,17) d d  

54 e b d (33,12) (24,21) (31,14) b e  

55 e c a (25,20) (24,21) (25,20) b b  

56 e c b (29,16) (24,21) (28,17) c c  

57 e c d (29,16) (24,21) (31,14) b e  

58 e d a (25,20) (24,21) (25,20) b b  

59 e d b (28,17) (24,21) (28,17) c c  

60 e d c (28,17) (24,21) (28,17) d d  
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3.12. Example 12 
 

Example 12: 
 

2  voters a v b v c 
2  voters b v c v a 
1  voter c v a v b 

 
The pairwise matrix N looks as follows: 

 

 N[*,a] N[*,b] N[*,c] 

N[a,*] --- 3 2 

N[b,*] 2 --- 4 

N[c,*] 3 1 --- 

 
The corresponding digraph looks as follows: 
 
 

 
 
 
The following table lists the strongest paths. The critical links of the 

strongest paths are underlined: 
 

 ... to a ... to b ... to c 

from a ... --- a, (3,2), b a, (3,2), b, 
(4,1), c 

from b ... b, (4,1), c, 
(3,2), a --- b, (4,1), c 

from c ... c, (3,2), a c, (3,2), a, 
(3,2), b --- 

 
We get  = {bc} and  = {a, b}. 
 

  

a b 

c 

(3,2) 

(3,2) (4,1) 
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Suppose, the strongest paths are calculated with the Floyd-Warshall 
algorithm, as defined in section 2.3. Then the following table documents the 
C ∙ (C–1) ∙ (C–2) = 6 steps of the Floyd-Warshall algorithm. 

 
We start with 
 

• PD[i,j] : = (N[i,j],N[j,i]) for all i ∈ A and j ∈ A \ {i}. 
 

• pred[i,j] : = i for all i ∈ A and j ∈ A \ {i}. 
 
 

 i j k PD[j,k] PD[j,i] PD[i,k] pred[j,k] pred[i,k] result 

1 a b c (4,1) (2,3) (2,3) b a  

2 a c b (1,4) (3,2) (3,2) c a PD[c,b] is updated from (1,4) to (3,2); 
pred[c,b] is updated from c to a 

3 b a c (2,3) (3,2) (4,1) a b PD[a,c] is updated from (2,3) to (3,2); 
pred[a,c] is updated from a to b 

4 b c a (3,2) (3,2) (2,3) c b  

5 c a b (3,2) (3,2) (3,2) a a  

6 c b a (2,3) (4,1) (3,2) b c PD[b,a] is updated from (2,3) to (3,2); 
pred[b,a] is updated from b to c 
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4. Analysis of the Schulze Method 
 

4.1. Transitivity 
 

In this section, we will prove that the binary relation , as defined in 
(2.2.1), is transitive. This means: If ab ∈  and bc ∈ , then ac ∈ . This 
guarantees that the set  of potential winners, as defined in (2.2.2), is non-
empty. When we interpret the Schulze method as a method to find a set  of 
potential winners, rather than a method to generate a binary relation , then 
the proof of the transitivity of  is an essential part of the proof that the 
Schulze method is well defined. 
 
Definition: 
 

An election method satisfies transitivity if the following holds for all 
a,b,c ∈ A: 

 
Suppose: 

 
(4.1.1) ab ∈ . 
 
(4.1.2) bc ∈ . 

 
Then: 

 
(4.1.3) ac ∈ . 
 

Claim: 
 

The binary relation , as defined in (2.2.1), is transitive. 
 
Proof: 

 
With (4.1.1), we get 

 
(4.1.4) PD[a,b] D PD[b,a]. 
 
With (4.1.2), we get 
 
(4.1.5) PD[b,c] D PD[c,b]. 
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With (2.2.5), we get 
 

(4.1.6) minD { PD[a,b], PD[b,c] } D PD[a,c]. 

(4.1.7) minD { PD[b,c], PD[c,a] } D PD[b,a]. 

(4.1.8) minD { PD[c,a], PD[a,b] } D PD[c,b]. 

Case 1: Suppose 

(4.1.9a) PD[a,b] D PD[b,c]. 

Combining (4.1.5) and (4.1.9a) gives 

(4.1.10a) PD[a,b] D PD[c,b]. 

Combining (4.1.8) and (4.1.10a) gives 

(4.1.11a) PD[c,a] D PD[c,b]. 

Combining (4.1.6) and (4.1.9a) gives 

(4.1.12a) PD[b,c] D PD[a,c]. 

Combining (4.1.11a), (4.1.5), and (4.1.12a) gives 

(4.1.13a) PD[c,a] D PD[c,b] D PD[b,c] D PD[a,c]. 

With (4.1.13a), we get (4.1.3). 

Case 2: Suppose 

(4.1.9b) PD[a,b] D PD[b,c]. 

Combining (4.1.4) and (4.1.9b) gives 

(4.1.10b) PD[b,a] D PD[b,c]. 

Combining (4.1.7) and (4.1.10b) gives 

(4.1.11b) PD[c,a] D PD[b,a]. 

Combining (4.1.6) and (4.1.9b) gives 

(4.1.12b) PD[a,b] D PD[a,c]. 

Combining (4.1.11b), (4.1.4), and (4.1.12b) gives 

(4.1.13b) PD[c,a] D PD[b,a] D PD[a,b] D PD[a,c]. 

With (4.1.13b), we get (4.1.3).      □ 

The proof, that the Schulze method is transitive, has first been published 
by Schulze (1998). 
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The following corollary says that the set  of potential winners, as 
defined in (2.2.2), is non-empty. 

Corollary (4.1.14): 

For the Schulze method, as defined in section 2.2, we get 

(4.1.14) ∀ b ∉  ∃ a ∈ : ab ∈ . 

Proof of corollary (4.1.14): 

As b ∉ , there must be a c(1) ∈ A with c(1),b ∈ . 

If c(1) ∈ , then the corollary is proven. If c(1) ∉ , then there must be a 
c(2) ∈ A with c(2),c(1) ∈ . With the asymmetry and the transitivity of , 
we get c(2),b ∈  and c(2) ∉ {b, c(1)}. 

We now proceed as follows: If c(i) ∈ , then the corollary is proven. If 
c(i) ∉ , then there must be a c(i+1) ∈ A with c(i+1),c(i) ∈ . With the 
asymmetry and the transitivity of , we get c(i+1),b ∈  and c(i+1) ∉ {b, 
c(1), ..., c(i)}. 

We proceed until c(i) ∈  for some i ∈ . Such an i ∈  exists because A 
is finite.            □ 

 
The following corollary says that alternative a ∈ A is the unique winner if 

and only if alternative a disqualifies every other alternative b ∈ A \ {a}. 
 

Corollary (4.1.15): 

For the Schulze method, as defined in section 2.2, we get 

(4.1.15)  = {a} ⇔ ab ∈  ∀ b ∈ A \ {a}. 

Proof of corollary (4.1.15): 

⇐ If ab ∈  ∀ b ∈ A \ {a}, then a ∈ A disqualifies every b ∈ A \ {a} 
according to (2.2.2). Therefore, we get  = {a}. 

⇒ With (4.1.14) and  = {a}, we get 

(4.1.16) ∀ b ∉ : ab ∈ . 

With  = {a}, we get 

(4.1.17) b ∉  ⇔ b ∈ A \ {a}. 

With (4.1.16) and (4.1.17), we get 

(4.1.18) ∀ b ∈ A \ {a}: ab ∈ .       □ 

In example 2 (section 3.2), we have ba ∉  and ac ∉  and bc ∈ . This 
shows that the Schulze relation, as defined in (2.2.1), is not necessarily 
negatively transitive. 
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4.2. Resolvability 

Resolvability basically says that usually there is a unique winner  = {a}. 
There are two different versions of the resolvability criterion. We will prove 
that the Schulze method, as defined in section 2.2, satisfies both. 

4.2.1. Formulation #1 
 
Definition: 

An election method satisfies the first version of the resolvability criterion 
if ( for every given number of alternatives ) the proportion of profiles 
without a unique winner tends to zero as the number of voters in the profile 
tends to infinity. 

Claim: 

If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 
satisfies the first version of the resolvability criterion. 

Proof (overview): 

Suppose (x1,x2),(y1,y2) ∈ 0 × 0. Then, according to (2.1.1), there is a    
v1 ∈ 0 such that for all w1 ∈ 0: 

1. w1 < v1 ⇒ (x1,x2) D (w1,y2). 

2. w1 > v1 ⇒ (x1,x2) D (w1,y2). 

When the number of voters tends to infinity ( i.e. when x1, x2, y1, and y2 
become large ), then the proportion of profiles, where the condition “y1 = v1” 
happens to be satisfied, tends to zero. Therefore, when the number of voters 
tends to infinity, then the proportion of profiles, where two links ef and gh 
happen to have equivalent strengths (N[e,f],N[f,e]) ≈D (N[g,h],N[h,g]), tends 
to zero. 

Therefore, we will prove that, unless there are links ef and gh of 
equivalent strengths, there is always a unique winner. We will prove this by 
showing that, when we simultaneously presume (a) that there is more than 
one potential winner and (b) that there are no links ef and gh of equivalent 
strengths, then we necessarily get to a contradiction. 

Proof (details): 

Suppose that there is more than one potential winner. Suppose alternative 
a ∈ A and alternative b ∈ A are potential winners. Then 

(4.2.1.1) ∀ i ∈ A \ {a}: PD[a,i] D PD[i,a]. 

(4.2.1.2) ∀ j ∈ A \ {b}: PD[b,j] D PD[j,b]. 

(4.2.1.3) PD[a,b] ≈D PD[b,a]. 
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Suppose there are no links ef and gh of equivalent strengths (N[e,f],N[f,e]) 
≈D (N[g,h],N[h,g]). Then PD[a,b] ≈D PD[b,a] means that the weakest link in 
the strongest path from alternative a to alternative b and the weakest link in 
the strongest path from alternative b to alternative a must be the same link, 
say cd. Therefore, the strongest paths have the following structure: 

 

 

 

As cd is the weakest link in the strongest path from alternative a to 
alternative b, we get 

(4.2.1.4) PD[a,d] ≈D PD[a,b]. 

(4.2.1.5) PD[d,b] D PD[a,b]. 

As cd is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(4.2.1.6) PD[b,d] ≈D PD[b,a]. 

(4.2.1.7) PD[d,a] D PD[b,a]. 
 
With (4.2.1.7), (4.2.1.3), and (4.2.1.4), we get 

(4.2.1.8) PD[d,a] D PD[b,a] ≈D PD[a,b] ≈D PD[a,d]. 

But (4.2.1.8) contradicts (4.2.1.1). 

Similarly, with (4.2.1.5), (4.2.1.3), and (4.2.1.6), we get 

(4.2.1.9) PD[d,b] D PD[a,b] ≈D PD[b,a] ≈D PD[b,d]. 

But (4.2.1.9) contradicts (4.2.1.2).       □ 

  

a b

c

d

P b cD[ , ]

( [ , ], [ , ])N c d N d c

P a cD[ , ]

P d aD[ , ] P d bD[ , ]



Markus Schulze, “The Schulze Method of Voting” 

 90 

4.2.2. Formulation #2 
 
The second version of the resolvability criterion says that, when there is 

more than one potential winner, then, for every alternative a ∈ , it is 
sufficient to add a single ballot w so that alternative a becomes the unique 
winner. 

 
Definition: 

 
An election method satisfies the second version of the resolvability 
criterion if the following holds: 
 

∀ a ∈ old: It is possible to construct a strict weak order w with 
the following two properties: 
 
(4.2.2.1) ∀ f ∈ A \ {a}: a w f. 
 
(4.2.2.2) new = {a} for Vnew : = Vold + {w}. 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the resolvability criterion. 
 

Proof: 
 

Suppose a ∈ old. Then we get 
 

(4.2.2.3) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 
 

Suppose predold[x,y] is the predecessor of alternative y in the strongest path 
from alternative x ∈ A to alternative y ∈ A \ {x}, as calculated in section 2.3. 

 
Suppose the strict weak order w is chosen as follows: 
 
(4.2.2.4) ∀ f ∈ A \ {a}: predold[a,f] w f. 
 
(4.2.2.5) ∀ e,f ∈ A \ {a}: ( P old

D [e,a] D P old
D [f,a] ⇒ e w f ). 

 
With (4.2.2.4), we get (4.2.2.1). 
 
We will prove the following three claims: 

 
Claim #1: It is not possible that (4.2.2.4) requires e w f 
and that simultaneously (4.2.2.5) requires f w e. 
 
Claim #2: ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 

 
Claim #3: ∀ g ∈ A \ {a}: P new

D [g,a] D P old
D [a,g]. 
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With claim #2 and claim #3, we get 
 

P new
D [a,g] D P new

D [g,a] for all g ∈ A \ {a} 
 
so that ag ∈ new for all g ∈ A \ {a} 
 
so that new = {a}. 
 

Proof of claim #1: 
 

Suppose e,f ∈ A \ {a}. With (2.2.3), we get 
 
(4.2.2.6) P old

D [e,f] D (Nold[e,f],Nold[f,e]). 
 
With (2.2.5), we get 
 
(4.2.2.7) minD { P old

D [e,f], P old
D [f,a] } D P old

D [e,a]. 
 
With (4.2.2.3), we get 
 
(4.2.2.8) P old

D [a,f] D P old
D [f,a]. 

 
Suppose (4.2.2.4) requires e w f. Then e = predold[a,f]. Therefore, the link 

ef was in the strongest path from alternative a to alternative f. Thus, we get 
 
(4.2.2.9) P old

D [a,f] D (Nold[e,f],Nold[f,e]). 
 

Suppose (4.2.2.5) requires f w e. Then 
 
(4.2.2.10) P old

D [f,a] D P old
D [e,a]. 

 
With (4.2.2.6), (4.2.2.9), (4.2.2.8), and (4.2.2.10), we get 
 
(4.2.2.11) P old

D [e,f] D (Nold[e,f],Nold[f,e]) D P old
D [a,f] D P old

D [f,a] D P old
D [e,a]. 

 
But (4.2.2.10) and (4.2.2.11) together contradict (4.2.2.7). 
 

Proof of claim #2: 
 

With (2.1.1) and (4.2.2.4), we get: The strength of each link of the 
strongest paths from alternative a to each other alternative g ∈ A \ {a} is 
increased. Therefore 

 
(4.2.2.12) ∀ g ∈ A \ {a}: P new

D [a,g] D P old
D [a,g]. 
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Proof of claim #3: 
 

Suppose g ∈ A \ {a}. Suppose 
 
(4.2.2.13) T(g) : = ( {a} ∪ { h ∈ A \ {a} | P old

D [h,a] D P old
D [a,g] } ). 

 
With (4.2.2.3) and (4.2.2.13), we get 
 
(4.2.2.14) g ∉ T(g) and a ∈ T(g) 
 
and, therefore, ∅ ≠ T(g) ⊊ A. Furthermore, we get 
 
(4.2.2.15) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nold[i,j],Nold[j,i]) D P old

D [a,g]. 
 
Otherwise, there was a path from alternative i to alternative a via 

alternative j with a strength of more than P old
D [a,g]. But ( as i ∉ T(g) ) this 

would contradict the definition of T(g). 
 

With (4.2.2.5), (4.2.2.1), and (4.2.2.13), we get 
 
(4.2.2.16) ∀ i ∉ T(g) ∀ j ∈ T(g): j w i. 
 
With (2.1.1) and (4.2.2.16), we get 
 
(4.2.2.17) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D (Nold[i,j],Nold[j,i]). 
 
With (4.2.2.15) and (4.2.2.17), we get 
 
(4.2.2.18) ∀ i ∉ T(g) ∀ j ∈ T(g): (Nnew[i,j],Nnew[j,i]) D P old

D [a,g]. 
 
With (4.2.2.14) and (4.2.2.18), we get 
 
(4.2.2.19) P new

D [g,a] D P old
D [a,g].        □ 

 
The proof in section 4.2.2 has first been published by Schulze (2011). It 

immediately attracted attention, because it doesn’t only prove that there is      
a tie-breaking ballot w, it also shows how this tie-breaking ballot w can be 
calculated in a polynomial runtime. Parkes and Xia (2012) pointed to the fact 
that this proof can also be interpreted as saying that it is possible to calculate 
a voting strategy in a polynomial runtime. This observation by Parkes and Xia 
has been extended by Gaspers (2012), Menton (2013a, 2013b), J. Müller 
(2013), Reisch (2014), Schend (2015), and Hemaspaandra (2016). Surveys, 
that are including the Schulze method, on the complexity of calculating a 
voting strategy have been written by Durand (2015), Baumeister and Rothe 
(2016), Conitzer and Walsh (2016), and Faliszewski and Rothe (2016). 
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4.3. Pareto 

The Pareto criterion says that the election method must respect 
unanimous opinions. There are two different versions of the Pareto criterion. 
The first version addresses situations with “ a v b for all v ∈ V ”, while the 
second version addresses situations with “ a v b for all v ∈ V ” ( for some 
pair of alternatives a,b ∈ A ). The first version says that, when every voter 
strictly prefers alternative a to alternative b ( i.e. a v b for all v ∈ V ), then 
alternative a must perform better than alternative b. The second version says 
that, when no voter strictly prefers alternative b to alternative a ( i.e. a v b 
for all v ∈ V ), then alternative b must not perform better than alternative a. 
We will prove that the Schulze method, as defined in section 2.2, satisfies 
both versions of the Pareto criterion. 

4.3.1. Formulation #1 

Definition: 

An election method satisfies the first version of the Pareto criterion if the 
following holds: 

Suppose: 

(4.3.1.1) ∀ v ∈ V: a v b. 

Then: 

(4.3.1.2) ab ∈ . 

(4.3.1.3) ∀ f ∈ A \ {a,b}: bf ∈  ⇒ af ∈ . 

(4.3.1.4) ∀ f ∈ A \ {a,b}: fa ∈  ⇒ fb ∈ . 

(4.3.1.5) b ∉ . 

Claim: 

If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 
satisfies the first version of the Pareto criterion. 

Proof: 

With (2.1.1) and (4.3.1.1), we get 

(4.3.1.6) ∀ e,f ∈ A: (N[a,b],N[b,a]) D (N[e,f],N[f,e]). 

(4.3.1.7) [ (N[a,b],N[b,a]) ≈D (N[e,f],N[f,e]) ] ⇔ [ ∀ v ∈ V: e v f ]. 

With (2.2.4), we get: ab ∈ , unless the link ab is in a directed cycle that 
consists of links of which each is at least as strong as the link ab. 

However, as we presumed that the individual ballots v are strict weak 
orders, it is not possible that there is a directed cycle of unanimous opinions. 
Therefore, it is not possible that the link ab is in a directed cycle that consists of 
links of which each is at least as strong as the link ab. Therefore, with (2.2.4), 
(4.3.1.6), and (4.3.1.7), we get (4.3.1.2). With (4.3.1.2), we get (4.3.1.5). With 
(4.3.1.2) and the transitivity of , we get (4.3.1.3) and (4.3.1.4).        □ 
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4.3.2. Formulation #2 
 
Definition: 
 

An election method satisfies the second version of the Pareto criterion if 
the following holds: 

 
Suppose: 

 
(4.3.2.1) ∀ v ∈ V: a v b. 

 
Then: 

 
(4.3.2.2) ba ∉ . 
 
(4.3.2.3) ∀ f ∈ A \ {a,b}: bf ∈  ⇒ af ∈ . 
 
(4.3.2.4) ∀ f ∈ A \ {a,b}: fa ∈  ⇒ fb ∈ . 
 
(4.3.2.5) b ∈  ⇒ a ∈ . 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies the second version of the Pareto criterion. 
 

Proof: 
 

With (4.3.2.1), we get 
 
(4.3.2.6) ∀ e ∈ A \ {a,b}: N[a,e] ≥ N[b,e]. 
 
With (4.3.2.1), we get 
 
(4.3.2.7) ∀ e ∈ A \ {a,b}: N[e,b] ≥ N[e,a]. 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.8) ∀ e ∈ A \ {a,b}: (N[a,e],N[e,a]) D (N[b,e],N[e,b]). 
 
With (2.1.1), (4.3.2.6), and (4.3.2.7), we get 
 
(4.3.2.9) ∀ e ∈ A \ {a,b}: (N[e,b],N[b,e]) D (N[e,a],N[a,e]). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative a. With (4.3.2.8) and (4.3.2.9), we get: a,c(2),...,c(n–1),b is a path 
from alternative a to alternative b with at least the same strength. Therefore 

 
(4.3.2.10) PD[a,b] D PD[b,a]. 
 
With (4.3.2.10), we get (4.3.2.2). 

 
Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 

alternative f ∈ A \ {a,b}. With (4.3.2.8), we get: a,c(m+1),...,c(n), where c(m) 
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is the last occurrence of an alternative of the set {a,b}, is a path from 
alternative a to alternative f with at least the same strength. Therefore 

 
(4.3.2.11) ∀ f ∈ A \ {a,b}: PD[a,f] D PD[b,f]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative                   
f ∈ A \ {a,b} to alternative a. With (4.3.2.9), we get: c(1),...,c(m–1),b, where 
c(m) is the first occurrence of an alternative of the set {a,b}, is a path from 
alternative f to alternative b with at least the same strength. Therefore 

(4.3.2.12) ∀ f ∈ A \ {a,b}: PD[f,b] D PD[f,a]. 

Part 1: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13a) bf ∈ . 

With (4.3.2.13a), we get 

(4.3.2.14a) PD[b,f] D PD[f,b]. 

With (4.3.2.11), (4.3.2.14a), and (4.3.2.12), we get 

(4.3.2.15a) PD[a,f] D PD[b,f] D PD[f,b] D PD[f,a]. 

With (4.3.2.15a), we get (4.3.2.3). 

Part 2: Suppose f ∈ A \ {a,b}. Suppose 

(4.3.2.13b) fa ∈ . 

With (4.3.2.13b), we get 

(4.3.2.14b) PD[f,a] D PD[a,f]. 

With (4.3.2.12), (4.3.2.14b), and (4.3.2.11), we get 

(4.3.2.15b) PD[f,b] D PD[f,a] D PD[a,f] D PD[b,f]. 

With (4.3.2.15b), we get (4.3.2.4). 

Part 3: Suppose 

(4.3.2.13c) b ∈ . 

With (4.3.2.13c), we get 

(4.3.2.14c) ∀ f ∈ A \ {b}: fb ∉ . 

With (4.3.2.4) and (4.3.2.14c), we get 

(4.3.2.15c) ∀ f ∈ A \ {a,b}: fa ∉ . 

With (4.3.2.2) and (4.3.2.15c), we get 

(4.3.2.16c) ∀ f ∈ A \ {a}: fa ∉ . 

With (4.3.2.16c), we get (4.3.2.5).      □ 
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4.4. Reversal Symmetry 
 
Reversal symmetry as a criterion for single-winner election methods has 

been proposed by Saari (1994). This criterion says that, when v is reversed 
for all v ∈ V, then also the result of the elections must be reversed; see 
(4.4.2). old must not be a strict subset of new; new must not be a strict 
subset of old; see (4.4.3). It should not be possible that the same alternatives 
are elected in the original situation and in the reversed situation, unless all 
alternatives are tied; see (4.4.4). 

 
Basic idea of this criterion is that, when there is a vote on the best 

alternatives and then there is a vote on the worst alternatives and when in 
both cases the same alternatives are chosen, then this questions the logic of 
the underlying heuristic of the used election method. 

 
Definition: 

 
An election method satisfies reversal symmetry if the following holds: 

 
Suppose: 
 

(4.4.1) ∀ e,f ∈ A ∀ v ∈ V: e  v
old  f ⇔ f  v

new  e. 
 

Then: 
 

(4.4.2) ∀ a,b ∈ A: ab ∈ old ⇔ ba ∈ new. 
 
(4.4.3) ( ∃ i ∈ A: i ∈ old ∧ i ∉ new ) ⇔ 

( ∃ j ∈ A: j ∉ old ∧ j ∈ new ). 
 
(4.4.4) old = new ⇔ old = A. 
 

Claim: 
 
The Schulze method, as defined in section 2.2, satisfies reversal symmetry. 
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Proof: 
 
With (4.4.1), we get 

(4.4.5) ∀ e,f ∈ A: Nold[e,f] = Nnew[f,e]. 

With (4.4.5), we get 

(4.4.6) ∀ e,f ∈ A: (Nold[e,f],Nold[f,e]) ≈D (Nnew[f,e],Nnew[e,f]). 

With (4.4.6), we get: When c(1),...,c(n) ∈ A was a path from alternative  
g ∈ A to alternative h ∈ A \ {g}, then c(n),...,c(1) is a path from alternative h 
to alternative g with the same strength. Therefore 

(4.4.7) ∀ g,h ∈ A: P old
D [g,h] ≈D P new

D [h,g]. 

With (4.4.7), we get (4.4.2). 

Part 1: 
 

Suppose ∃ i ∈ A: i ∈ old and i ∉ new. With i ∉ new and (4.1.14), we get 
that there is a j ∈ new with ji ∈ new. With (4.4.2), we get ij ∈ old and, 
therefore, j ∉ old. With j ∉ old and j ∈ new, we get the “⇒” direction of 
(4.4.3). The proof for the “⇐” direction of (4.4.3) is analogous. 

 
Part 2: 
 

Suppose old = A. Then we get old = ∅. Otherwise, if there was an         
ij ∈ old, we would immediately get j ∉ old and, therefore, old ≠ A. With 
old = ∅ and (4.4.2), we get new = ∅ and, therefore, new = A. With old = A 
and new = A, we get old = new. 

 
Part 3: 

Suppose old ≠ A. Then there is a j ∉ old. With (4.1.14), we get that there 
is an i ∈ old with ij ∈ old. With (4.4.2), we get ji ∈ new and, therefore,       
i ∉ new. With i ∈ old and i ∉ new, we get old ≠ new. With part 2 and part 
3, we get (4.4.4).          □ 
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4.5. Monotonicity 
 
Monotonicity says that, when some voters rank alternative a ∈ A higher 

[see (4.5.1) and (4.5.2)] without changing the order in which they rank the 
other alternatives relatively to each other [see (4.5.3)], then this must not 
hurt alternative a [see (4.5.4) – (4.5.6)]. Monotonicity is also known as 
mono-raise and non-negative responsiveness. 

 
Definition: 
 

An election method satisfies monotonicity if the following holds: 
 

Suppose a ∈ A. Suppose the ballots are modified in such a manner 
that the following three statements are satisfied: 
 

(4.5.1) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v
old  f ⇒ a  v

new  f. 
 
(4.5.2) ∀ f ∈ A \ {a} ∀ v ∈ V: a  v

old  f ⇒ a  v
new  f. 

 
(4.5.3) ∀ e,f ∈ A \ {a} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then: 

 
(4.5.4) ∀ b ∈ A \ {a}: ab ∈ old ⇒ ab ∈ new. 
 
(4.5.5) ∀ b ∈ A \ {a}: ba ∉ old ⇒ ba ∉ new. 
 
(4.5.6) a ∈ old ⇒ a ∈ new ⊆ old. 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 

satisfies monotonicity. 
 

Proof: 
 

Part 1: 
 
With (4.5.1), we get 
 
(4.5.7) ∀ f ∈ A \ {a}: Nold[a,f] ≤ Nnew[a,f]. 
 
With (4.5.2), we get 
 
(4.5.8) ∀ f ∈ A \ {a}: Nold[f,a] ≥ Nnew[f,a]. 
 
With (4.5.3), we get 
 
(4.5.9) ∀ e,f ∈ A \ {a}: Nold[e,f] = Nnew[e,f]. 
 
With (2.1.1), (4.5.7), and (4.5.8), we get 
 
(4.5.10) ∀ f ∈ A \ {a}: (Nold[a,f],Nold[f,a]) D (Nnew[a,f],Nnew[f,a]). 
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With (2.1.1), (4.5.7), and (4.5.8), we get 

(4.5.11) ∀ f ∈ A \ {a}: (Nold[f,a],Nold[a,f]) D (Nnew[f,a],Nnew[a,f]). 

With (4.5.9), we get 

(4.5.12) ∀ e,f ∈ A \ {a}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ A was the strongest path from alternative a to 
alternative b ∈ A \ {a}. Then with (4.5.10) and (4.5.12), we get: c(1),...,c(n) 
is a path from alternative a to alternative b with at least the same strength. 
Therefore 

(4.5.13) ∀ b ∈ A \ {a}: P new
D [a,b] D P old

D [a,b]. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b ∈ A \ {a} 
to alternative a. Then with (4.5.11) and (4.5.12), we get: c(1),...,c(n) was a 
path from alternative b to alternative a with at least the same strength. 
Therefore 

(4.5.14) ∀ b ∈ A \ {a}: P old
D [b,a] D P new

D [b,a]. 

With (4.5.13) and (4.5.14), we get (4.5.4) and (4.5.5). 

Part 2: 

It remains to prove (4.5.6). Suppose a ∈ old. Then “ a ∈ new ” follows 
directly from (4.5.5). To prove “ new ⊆ old ”, we have to prove: h ∉ old ⇒ 
h ∉ new. 

As a ∈ old, we get 

(4.5.15) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 

Suppose h ∉ old. Then, according to (4.1.14), there must have been an 
alternative g ∈ old with 

(4.5.16) P old
D [g,h] D P old

D [h,g]. 

With (4.5.10) – (4.5.12) and (4.5.16), we get: P new
D [g,h] D P new

D [h,g], 
unless at least one of the following two cases occurred. 

Case 1: xa was a weakest link in the strongest path from 
alternative g to alternative h. 

Case 2: ay was the weakest link in the strongest path from 
alternative h to alternative g. 

With (4.5.15), we get: P old
D [a,h] D P old

D [h,a]. For P old
D [a,h] D P old

D [h,a], 
we would, with (4.5.4), immediately get P new

D [a,h] D P new
D [h,a], so that 

alternative h is still not a potential winner. Therefore, without loss of 
generality, we can presume g ∈ old \ {a} and 

(4.5.17) P old
D [a,h] ≈D P old

D [h,a].  
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With a ∈ old and g ∈ old \ {a}, we get 

(4.5.18) P old
D [a,g] ≈D P old

D [g,a]. 

With (2.2.5), we get 

(4.5.19) minD { P old
D [g,h], P old

D [h,a] } D P old
D [g,a]. 

(4.5.20) minD { P old
D [h,a], P old

D [a,g] } D P old
D [h,g]. 

Case 1: Suppose xa was a weakest link in the strongest path from 
alternative g to alternative h. Then 

(4.5.21a)  P old
D [g,h] ≈D P old

D [g,a] and 

(4.5.22a)  P old
D [a,h] D P old

D [g,h]. 

Now (4.5.18), (4.5.21a), and (4.5.16) give 

(4.5.23a)  P old
D [a,g] ≈D P old

D [g,a] ≈D P old
D [g,h] D P old

D [h,g], 

while (4.5.17), (4.5.22a), and (4.5.16) give 

(4.5.24a)  P old
D [h,a] ≈D P old

D [a,h] D P old
D [g,h] D P old

D [h,g]. 

But (4.5.23a) and (4.5.24a) together contradict (4.5.20). 

Case 2: Suppose ay was the weakest link in the strongest path from 
alternative h to alternative g. Then 

(4.5.21b)  P old
D [h,g] ≈D P old

D [a,g] and 

(4.5.22b)  P old
D [h,a] D P old

D [h,g]. 

Now (4.5.22b), (4.5.21b), and (4.5.18) give 

(4.5.23b)  P old
D [h,a] D P old

D [h,g] ≈D P old
D [a,g] ≈D P old

D [g,a], 

while (4.5.16), (4.5.21b), and (4.5.18) give 

(4.5.24b)  P old
D [g,h] D P old

D [h,g] ≈D P old
D [a,g] ≈D P old

D [g,a]. 

But (4.5.23b) and (4.5.24b) together contradict (4.5.19). 

We have proven that neither case 1 nor case 2 is possible. Therefore 

(4.5.25) P new
D [g,h] D P new

D [h,g]. 

With (4.5.25), we get: h ∉ new.       □ 
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4.6. Independence of Clones 
 

Independence of clones as a criterion for single-winner election methods 
has been proposed by Tideman (1987). This criterion says that running a 
large number of similar alternatives, so-called clones, must not have any 
impact on the result of the elections. 

 
The precise definition for a set of clones stipulates that every voters ranks 

all the alternatives of this set in a consecutive manner; see (4.6.1) and 
(4.6.2). Replacing an alternative d ∈ Aold by a set of clones K should not 
change the winner; see (4.6.7) and (4.6.8). 

 
This criterion is very desirable especially for referendums because, while 

it might be difficult to find several candidates who are simultaneously 
sufficiently popular to campaign with them and sufficiently similar to misuse 
them for this strategy, it is usually very simple to formulate a large number 
of almost identical proposals. For example: In 1969, when the Canadian city 
that is now known as Thunder Bay was amalgamating, there was some 
controversy over what the name should be. In opinion polls, a majority of the 
voters preferred the name The Lakehead to the name Thunder Bay. But when 
the polls opened, there were three names on the referendum ballot: Thunder 
Bay, Lakehead, and The Lakehead. As the ballots were counted using 
plurality voting, it was not a surprise when Thunder Bay won. The votes 
were as follows: Thunder Bay 15870, Lakehead 15302, The Lakehead 8377 
(Cretney, 2000). 
 
Definition: 
 

An election method is independent of clones if the following holds: 
 
Suppose d ∈ Aold. Suppose Anew : = ( Aold ∪ K ) \ {d}. 
 
Suppose alternative d is replaced by the set of alternatives K in 
such a manner that the following three statements are satisfied: 
 

(4.6.1) ∀ e ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: e  v
old  d ⇔ e  v

new  g. 
 
(4.6.2) ∀ f ∈ Aold \ {d} ∀ g ∈ K ∀ v ∈ V: d  v

old  f ⇔ g  v
new  f. 

 
(4.6.3) ∀ e,f ∈ Aold \ {d} ∀ v ∈ V: e  v

old  f ⇔ e  v
new  f. 

 
Then the following statements are satisfied: 

 
(4.6.4) ∀ a ∈ Aold \ {d} ∀ g ∈ K: ad ∈ old ⇔ ag ∈ new. 
 
(4.6.5) ∀ b ∈ Aold \ {d} ∀ g ∈ K: db ∈ old ⇔ gb ∈ new. 
 
(4.6.6) ∀ a,b ∈ Aold \ {d}: ab ∈ old ⇔ ab ∈ new. 
 
(4.6.7) d ∈ old ⇔ new ∩ K ≠ ∅. 
 
(4.6.8) ∀ a ∈ Aold \ {d}: a ∈ old ⇔ a ∈ new. 
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Claim: 

The Schulze method, as defined in section 2.2, is independent of clones. 

Proof: 

With (4.6.1), we get 

(4.6.9) ∀ e ∈ Aold \ {d} ∀ g ∈ K: Nold[e,d] = Nnew[e,g]. 

With (4.6.2), we get 

(4.6.10) ∀ f ∈ Aold \ {d} ∀ g ∈ K: Nold[d,f] = Nnew[g,f]. 

With (4.6.3), we get 

(4.6.11) ∀ e,f ∈ Aold \ {d}: Nold[e,f] = Nnew[e,f]. 

With (4.6.9) and (4.6.10), we get 

(4.6.12) ∀ e ∈ Aold \ {d} ∀ g ∈ K: (Nold[e,d],Nold[d,e]) ≈D (Nnew[e,g],Nnew[g,e]). 

With (4.6.9) and (4.6.10), we get 

(4.6.13) ∀ f ∈ Aold \ {d} ∀ g ∈ K: (Nold[d,f],Nold[f,d]) ≈D (Nnew[g,f],Nnew[f,g]). 

With (4.6.11), we get 

(4.6.14) ∀ e,f ∈ Aold \ {d}: (Nold[e,f],Nold[f,e]) ≈D (Nnew[e,f],Nnew[f,e]). 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative           
a ∈ Aold \ {d} to alternative d. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(n–1),g is a path from alternative a to alternative g ∈ K with the 
same strength. Therefore 

(4.6.15) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P new
D [a,g] D P old

D [a,d]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative              
a ∈ Anew \ K to alternative g ∈ K. Then with (4.6.12) and (4.6.14), we get: 
c(1),...,c(m–1),d, where c(m) is the first occurrence of an alternative of the 
set K, was a path from alternative a to alternative d with at least the same 
strength. Therefore 

(4.6.16) ∀ a ∈ Anew \ K ∀ g ∈ K: P old
D [a,d] D P new

D [a,g]. 

Suppose c(1),...,c(n) ∈ Aold was the strongest path from alternative d to 
alternative b ∈ Aold \ {d}. Then with (4.6.13) and (4.6.14), we get: 
g,c(2),...,c(n) is a path from alternative g ∈ K to alternative b with the same 
strength. Therefore 

(4.6.17) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P new
D [g,b] D P old

D [d,b]. 

Suppose c(1),...,c(n) ∈ Anew is the strongest path from alternative g ∈ K to 
alternative b ∈ Anew \ K. Then with (4.6.13) and (4.6.14), we get: 
d,c(m+1),...,c(n), where c(m) is the last occurrence of an alternative of the set 
K, was a path from alternative d to alternative b with at least the same 
strength. Therefore 

(4.6.18) ∀ b ∈ Anew \ K ∀ g ∈ K: P old
D [d,b] D P new

D [g,b]. 
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(α) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative              
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} did not contain alternative d. 
Then with (4.6.14), we get: c(1),...,c(n) is still a path from alternative a to 
alternative b with the same strength. Therefore: P new

D [a,b] D P old
D [a,b]. 

(β) Suppose the strongest path c(1),...,c(n) ∈ Aold from alternative             
a ∈ Aold \ {d} to alternative b ∈ Aold \ {a,d} contained alternative d. Then 
with (4.6.12), (4.6.13), and (4.6.14), we get: c(1),...,c(n), with alternative d 
replaced by an arbitrarily chosen alternative g ∈ K, is still a path from 
alternative a to alternative b with the same strength. Therefore:                     
P new

D [a,b] D P old
D [a,b]. 

With (α) and (β), we get 

(4.6.19) ∀ a,b ∈ Aold \ {d}: P new
D [a,b] D P old

D [a,b]. 

(γ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) does not contain 
alternatives of the set K. Then with (4.6.14), we get: c(1),...,c(n) was a path 
from alternative a to alternative b with the same strength. Therefore:            
P old

D [a,b] D P new
D [a,b]. 

(δ) Suppose the strongest path c(1),...,c(n) ∈ Anew from alternative            
a ∈ Anew \ K to alternative b ∈ Anew \ ( K ∪ {a} ) contains some alternatives 
of the set K. Then with (4.6.12), (4.6.13), and (4.6.14), we get:      
c(1),...,c(s–1),d,c(t+1),...,c(n), where c(s) is the first occurrence of an 
alternative of the set K and c(t) is the last occurrence of an alternative of the 
set K, was a path from alternative a to alternative b with at least the same 
strength. Therefore: P old

D [a,b] D P new
D [a,b]. 

With (γ) and (δ), we get 

(4.6.20) ∀ a,b ∈ Anew \ K: P old
D [a,b] D P new

D [a,b]. 

Combining (4.6.15) and (4.6.16) gives 

(4.6.21) ∀ a ∈ Aold \ {d} ∀ g ∈ K: P old
D [a,d] ≈D P new

D [a,g]. 

Combining (4.6.17) and (4.6.18) gives 

(4.6.22) ∀ b ∈ Aold \ {d} ∀ g ∈ K: P old
D [d,b] ≈D P new

D [g,b]. 

Combining (4.6.19) and (4.6.20) gives 

(4.6.23) ∀ a,b ∈ Aold \ {d}: P old
D [a,b] ≈D P new

D [a,b]. 

With (4.6.21) – (4.6.23), we get (4.6.4) – (4.6.6). 

Part 1: 

Suppose d ∈ old. Then 

(4.6.24) ∀ a ∈ Aold \ {d}: ad ∉ old. 
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With (4.6.4) and (4.6.24), we get 

(4.6.25) ∀ a ∈ Anew \ K ∀ g ∈ K: ag ∉ new. 

Since the binary relation new, as defined in (2.2.1), is asymmetric and 
transitive, there must be an alternative k ∈ K with 

(4.6.26) ∀ l ∈ K \ {k}: lk ∉ new. 

With (4.6.25) and (4.6.26), we get k ∈ new ∩ K and, therefore, new ∩ K ≠ ∅. 

Part 2: 

Suppose d ∉ old. Then 

(4.6.27) ∃ a ∈ Aold \ {d}: ad ∈ old. 

With (4.6.4) and (4.6.27), we get 

(4.6.28) ∃ a ∈ Anew \ K ∀ g ∈ K: ag ∈ new. 

With (4.6.28), we get: new ∩ K = ∅. 

With part 1 and part 2, we get (4.6.7).  

Part 3: 

Suppose a ∈ Aold \ {d} and a ∈ old. Then 

(4.6.29) da ∉ old. 

(4.6.30) ∀ b ∈ Aold \ {a,d}: ba ∉ old. 

With (4.6.5) and (4.6.29), we get 

(4.6.31) ∀ g ∈ K: ga ∉ new. 

With (4.6.6) and (4.6.30), we get 

(4.6.32) ∀ b ∈ Anew \ ( K ∪ {a} ): ba ∉ new. 

With (4.6.31) and (4.6.32), we get: a ∈ new. 

Part 4: 

Suppose a ∈ Aold \ {d} and a ∉ old. Then at least one of the following 
two statements must have been valid: 

(4.6.33a) da ∈ old. 

(4.6.33b) ∃ b ∈ Aold \ {a,d}: ba ∈ old. 

With (4.6.5), (4.6.6), and (4.6.33), we get that at least one of the 
following two statements must be valid: 

(4.6.34a) ∀ g ∈ K: ga ∈ new. 

(4.6.34b) ∃ b ∈ Anew \ ( K ∪ {a} ): ba ∈ new. 

With (4.6.34), we get: a ∉ new. 
 
With part 3 and part 4, we get  (4.6.8).       □  
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4.7. Smith Criterion, Condorcet Winners, Condorcet Losers 
 

The Smith criterion and Smith-IIA (where IIA means “independence of 
irrelevant alternatives”) say that weak alternatives should have no impact on 
the result of the elections. 

 
Suppose: 
 
(4.7.1) ∅ ≠ B1 ⊊ A, ∅ ≠ B2 ⊊ A, B1 ∪ B2 = A, B1 ∩ B2 = ∅. 
 
(4.7.2) ∀ a ∈ B1 ∀ b ∈ B2: N[a,b] > N[b,a]. 
 
Then a weak alternative in the Smith paradigm is an alternative b ∈ B2. 

Adding or removing a weak alternative b ∈ B2 should have no impact on the 
set  of potential winners. 
 
Definition: 

An election method satisfies the Smith criterion if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.3) ∀ a ∈ B1 ∀ b ∈ B2: ab ∈ . 
 
(4.7.4) ∅ ≠  ⊆ B1. 
 

Remark: 

If B1 consists of only one alternative a ∈ A, then this alternative is the   
so-called Condorcet winner and the Smith criterion becomes the so-called 
Condorcet criterion (Condorcet, 1785). In short: 

(4.7.5) Alternative a ∈ A is a Condorcet winner : ⇔ 
N[a,b] > N[b,a] for all b ∈ A \ {a}. 

(4.7.6) An election method satisfies the Condorcet criterion if the 
following holds: 

 Alternative a ∈ A is a Condorcet winner. ⇒  = {a}. 

If B2 consists of only one alternative b ∈ A, then this alternative is the   
so-called Condorcet loser and the Smith criterion becomes the so-called 
Condorcet loser criterion. In short: 

(4.7.7) Alternative b ∈ A is a Condorcet loser : ⇔ 
N[a,b] > N[b,a] for all a ∈ A \ {b}. 

(4.7.8) An election method satisfies the Condorcet loser criterion if 
the following holds: 

 Alternative b ∈ A is a Condorcet loser. ⇒ b ∉ . 
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Claim: 
 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the Smith criterion. 
 

Proof: 
  
The proof is trivial. Presumption (2.1.5) guarantees that any pairwise 

victory is stronger than any pairwise defeat. If a ∈ B1 and b ∈ B2, then already 
the link ab is a path from alternative a to alternative b that consists only of a 
pairwise victory. On the other side, (4.7.2) says that there cannot be a path 
from alternative b to alternative a that contains no pairwise defeat. So already 
the link ab is stronger than any path from alternative b to alternative a.      □ 

 
Definition: 

An election method satisfies Smith-IIA if the following holds: 
 
Suppose (4.7.1) and (4.7.2). Then: 
 
(4.7.9) If d ∈ B2 is removed, then 
 

(a) ∀ e,f ∈ B1: ef ∈ old ⇔ ef ∈ new. 
 
(b) old = new. 
 

(4.7.10) If d ∈ B1 is removed, then 
 

∀ e,f ∈ B2: ef ∈ old ⇔ ef ∈ new. 
 
Claim: 

If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 
satisfies Smith-IIA. 
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Proof: 

We will prove (4.7.9)(a). The proof for (4.7.10) is analogous. 

(4.7.9)(b) follows directly from (4.7.4) and (4.7.9)(a). 

Part 1: Suppose e,f ∈ B1. Suppose ef ∈ old. Then 

(4.7.11) P old
D [e,f] D P old

D [f,e]. 

With (2.2.3), we get 

(4.7.12) P old
D [e,f] D (N[e,f],N[f,e]). 

With (4.7.11) and (2.2.3), we get 

(4.7.13) P old
D [e,f] D P old

D [f,e] D (N[f,e],N[e,f]). 

With (4.7.12) and (4.7.13), we get 
 
(4.7.14) P old

D [e,f] D maxD { (N[e,f],N[f,e]), (N[f,e],N[e,f]) }. 
 
With (4.7.2), we get: Any path from alternative e ∈ B1 to alternative         

f ∈ B1 that contained alternative d ∈ B2 necessarily contained a pairwise 
defeat. 

 
As it is not possible that the link ef is a pairwise defeat and that 

simultaneously the link fe is a pairwise defeat, maxD { (N[e,f],N[f,e]), (N[f,e], 
N[e,f]) } is stronger than any pairwise defeat [ because of (2.1.5) ]. Therefore, 
with (4.7.2) and (4.7.14), we get: The strongest path from alternative e ∈ B1 
to alternative f ∈ B1 did not contain alternative d ∈ B2. Therefore 

 
(4.7.15) P new

D [e,f] ≈D P old
D [e,f]. 

 
As the elimination of alternative d ∈ B2 only removes paths, we get 
 
(4.7.16) P new

D [f,e] D P old
D [f,e]. 

 
With (4.7.15), (4.7.11), and (4.7.16), we get 
 
(4.7.17) P new

D [e,f] ≈D P old
D [e,f] D P old

D [f,e] D P new
D [f,e]. 

 
With (4.7.17), we get: ef ∈ new. 
 
Part 2: The proof for “ P old

D [f,e] D P old
D [e,f] ” is analogous. 
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Part 3: When we have P old
D [e,f] ≈D P old

D [f,e] then, with the same 
argumentation as in Part 1, we get 

 
(4.7.18) P old

D [e,f] D maxD { (N[e,f],N[f,e]), (N[f,e],N[e,f]) }. 
 
(4.7.19) P old

D [f,e] D maxD { (N[e,f],N[f,e]), (N[f,e],N[e,f]) }. 
 
So with the same argumentation as in Part 1, we can show that neither the 

strongest path from alternative e ∈ B1 to alternative f ∈ B1 nor the strongest 
path from alternative f ∈ B1 to alternative e ∈ B1 did contain alternative        
d ∈ B2.           □ 

 
The majority criterion for solid coalitions says that, when a majority of 

the voters strictly prefers every alternative of a given set of alternatives to 
every alternative outside this set of alternatives, then the winner must be 
chosen from this set. In short, an election method satisfies the majority 
criterion for solid coalitions if the following holds: 

Suppose (4.7.1). 
Suppose ║{ v ∈ V | ∀ a ∈ B1 ∀ b ∈ B2: a v b }║ > N/2. 
Then  ⊆ B1. 

 
If B1 consists of only one alternative a ∈ A, then this is the so-called 

majority criterion. If B2 consists of only one alternative b ∈ A, then this is 
the so-called majority loser criterion. 

Participation says that adding a list W of ballots, on which every 
alternative of a given set of alternatives is strictly preferred to every 
alternative outside this set, must not hurt the alternatives of this set. In short, 
an election method satisfies participation if the following holds: 

 
Suppose (4.7.1). 
 
Suppose ∀ a ∈ B1 ∀ b ∈ B2 ∀ w ∈ W: a w b. 
 
Suppose Vnew : = Vold + W. 
 
Then (4.7.20) ∀ e ∈ B1 ∀ f ∈ B2: ef ∈ old ⇒ ef ∈ new. 
  
 (4.7.21) ∀ e ∈ B1 ∀ f ∈ B2: fe ∉ old ⇒ fe ∉ new. 
  
 (4.7.22) old ∩ B1 ≠ ∅ ⇒ new ∩ B1 ≠ ∅. 

 
(4.7.23) old ∩ B2 = ∅ ⇒ new ∩ B2 = ∅. 

 
The Smith criterion implies the majority criterion for solid coalitions, the 

Condorcet criterion, and the Condorcet loser criterion. The majority criterion 
for solid coalitions implies the majority criterion and the majority loser 
criterion. The Condorcet criterion implies the majority criterion. The 
Condorcet loser criterion implies the majority loser criterion. Unfortunately, 
the Condorcet criterion is incompatible with the participation criterion 
(Moulin, 1988). Example 5 shows a drastic violation of the participation 
criterion. 
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4.8. MinMax Set 
 
For all ∅ ≠ B ⊊ A, we define 
 
(4.8.1) ΓD(B) : = maxD { (N[x,y],N[y,x]) | x ∉ B, y ∈ B }. 
 
Furthermore, we define 
 
(4.8.2) βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A }. 
 
(4.8.3) BD : =  { ∅ ≠ B ⊊ A | ΓD(B) ≈D βD }. 
 
BD is the MinMax set. BD has the following properties: 
 

1. BD ≠ ∅. 
 
2. If BD consists of only one alternative a ∈ A, then alternative a is 

the unique Simpson-Kramer winner ( i.e. that alternative a ∈ A 
with minimum maxD { (N[b,a],N[a,b]) | b ∈ A \ {a} } ). 

 
3. If d ∈ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = ( BD ∪ K ) \ {d}. 

 
4. If d ∉ BD is replaced by a set of alternatives K as described in 

(4.6.1) – (4.6.3), then B new
D  = BD. 

 
So, in some sense, the MinMax set BD is a clone-proof generalization of 

the Simpson-Kramer winner. 
 
When we want primarily that the used election method is independent of 

clones and secondarily that the strongest link ef, that is overruled when 
determining the winner, is minimized, then we have to demand that the 
winner is always chosen from the MinMax set BD. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, has the following 

properties: 
 
(4.8.4) ∀ a ∈ BD ∀ b ∉ BD: ab ∈ . 
 
(4.8.5)  ⊆ BD. 
 

Proof: 
 
Suppose a ∈ BD. Then we get 
 
(4.8.6) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B. 

 
Suppose b ∉ BD. Then we get 
 
(4.8.7) γD : = minD { ΓD(B) | ∅ ≠ B ⊊ A and b ∈ B } D βD. 
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We will prove the following claims: 
 

Claim #1: PD[b,a] D βD. 
Claim #2: PD[a,b] D γD. 

With claim #1, claim #2, and (4.8.7), we get 

(4.8.8) PD[a,b] D γD D βD D PD[b,a]. 

With (4.8.8), we get (4.8.4). With (4.8.4), we get (4.8.5). 

Proof of claim #1: 

With (4.8.6) and (4.8.7), we get 

(4.8.9) ∃ ∅ ≠ B ⊊ A: ΓD(B) ≈D βD and a ∈ B and b ∉ B. 

Suppose c(1),...,c(n) ∈ A is the strongest path from alternative b to 
alternative a. Suppose c(i) is the last alternative with c(i) ∉ B. Then we get 
(N[c(i),c(i+1)],N[c(i+1),c(i)]) D βD. Therefore, we get 

(4.8.10) PD[b,a] D βD. 

Proof of claim #2: 

We can construct a path from alternative a to alternative b with a strength 
of at least γD as follows: 

(1) We start with E1 : = {a} and i : = 1. Trivially, we get b ∉ E1 and 
PD[a,h] D γD for all h ∈ E1 \ {a}. 

(2) At each stage, we consider the set Bi : = A \ Ei. 

With b ∈ Bi and with (4.8.7), we get 

(4.8.11)  ΓD(Bi) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We choose f ∈ Ei and g ∈ Bi with 

(4.8.12)  (N[f,g],N[g,f]) ≈D maxD { (N[y,x],N[x,y]) | y ∉ Bi, x ∈ Bi } D γD. 

We define Ei+1 : = Ei ∪ {g}. 

With f ∈ Ei, with PD[a,h] D γD for all h ∈ Ei \ {a}, with (N[f,g], 
N[g,f]) D γD, and with Ei+1 : = Ei ∪ {g}, we get 

(4.8.13)  PD[a,h] D γD for all h ∈ Ei+1 \ {a}. 

(3) We repeat stage 2 with i → i+1, until g ≡ b. 
 
Therefore, we get 
 
(4.8.14) PD[a,b] D γD.        □ 
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Example 6 shows that IPDA and the desideratum, that the winner is 
always chosen from the MinMax set BD, are incompatible. In example 
6(old), we get B

old
D  = {a, c, d}. In example 6(new), we get B

new
D  = {b}. 

Therefore, B
old
D  ∩ B

new
D  = ∅. Thus, the desideratum, that the winner is 

always chosen from the MinMax set BD, implies that the winner is changed. 
 

Actually, the Schulze method can be described completely with the 
desideratum to find a binary relation  on A that, primarily, is independent 
of clones (as defined in section 4.6) and that, secondarily, tries to rank the 
alternatives according to their worst defeats. 

 
For all a,b ∈ A, we define 
 
(4.8.15) γD[a,b] : = minD { ΓD(B) | ∅ ≠ B ⊊ A and a ∉ B and b ∈ B }. 
 
(4.8.16) ab ∈  : ⇔ γD[a,b] D γD[b,a]. 

 
To prove that (4.8.16) is identical to (2.2.1), we have to prove γD[a,b] = 

PD[a,b]. This proof is identical to the proof for (4.8.4). 
 

Example 1 
 
In example 1 (section 3.1), we have: 
 
ΓD(B) : = maxD { (N[x,y],N[y,x]) | x ∉ B, y ∈ B }. 
 
ΓD({a}) = (13,8). 
ΓD({b}) = (19,2). 
ΓD({c}) = (14,7). 
ΓD({d}) = (12,9). 
ΓD({a,b}) = (19,2). 
ΓD({a,c}) = (13,8). 
ΓD({a,d}) = (13,8). 
ΓD({b,c}) = (19,2). 
ΓD({b,d}) = (15,6). 
ΓD({c,d}) = (14,7). 
ΓD({a,b,c}) = (19,2). 
ΓD({a,b,d}) = (15,6). 
ΓD({a,c,d}) = (13,8). 
ΓD({b,c,d}) = (14,7). 
 
βD : = minD { ΓD(B) | ∅ ≠ B ⊊ A }. 
 
βD = (12,9). 
 
BD : =  { ∅ ≠ B ⊊ A | ΓD(B) ≈D βD }. 
 
BD = {d}. 
 
So with (4.8.5), we get  = {d}. 
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γD[x,y] : = minD { ΓD(B) | ∅ ≠ B ⊊ A and x ∉ B and y ∈ B }. 
 
γD[a,b] = ΓD({b,c,d}) = (14,7). 
γD[a,c] = ΓD({c}) = ΓD({c,d}) = ΓD({b,c,d}) = (14,7). 
γD[a,d] = ΓD({d}) = (12,9). 
γD[b,a] = ΓD({a}) = ΓD({a,c}) = ΓD({a,d}) = ΓD({a,c,d}) = (13,8). 
γD[b,c] = ΓD({a,c}) = ΓD({a,c,d}) = (13,8). 
γD[b,d] = ΓD({d}) = (12,9). 
γD[c,a] = ΓD({a}) = ΓD({a,d}) = (13,8). 
γD[c,b] = ΓD({b,d}) = ΓD({a,b,d}) = (15,6). 
γD[c,d] = ΓD({d}) = (12,9). 
γD[d,a] = ΓD({a}) = ΓD({a,c}) = (13,8). 
γD[d,b] = ΓD({b}) = ΓD({a,b}) = ΓD({b,c}) = ΓD({a,b,c}) = (19,2). 
γD[d,c] = ΓD({a,c}) = (13,8). 
 

4.9. Prudence 
 
Prudence as a criterion for single-winner election methods has been 

proposed by Köhler (1978) and generalized by Arrow and Raynaud (1986). 
This criterion says that the strength λD of the strongest link ef, that is not 
respected by the binary relation , should be as weak as possible. So          
λD : = maxD { (N[e,f],N[f,e]) | ef ∉  } should be minimized. 

 
A directed cycle is a sequence of alternatives c(1),...,c(n) ∈ A with the 
following properties: 

 
1. c(1) ≡ c(n). 
2. n ∈  with 3 ≤ n < ∞. 
3. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 

 
It is obvious that, when there is a directed cycle c(1),...,c(n), then the 

strongest link, that is not respected by the binary relation , is at least as 
strong as the weakest link c(i),c(i+1) of this directed cycle. Therefore, we get: 

 
(4.9.1) λD D minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) }. 
 
As we have to make this consideration for all directed cycles, the 

maximum, that we can ask for, is the following criterion. 
 

Definition: 
 
Suppose λD ∈ 0 × 0 is the strength of the strongest directed cycle. 
 
(4.9.2) λD : = maxD { minD { (N[c(i),c(i+1)],N[c(i+1),c(i)]) | i = 1,...,(n–1) } 

| c(1),...,c(n) is a directed cycle }. 
 

Then an election method is prudent if the following holds: 
 
(4.9.3) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ ab ∈ . 
 
(4.9.4) ∀ a,b ∈ A: (N[a,b],N[b,a]) D λD ⇒ b ∉ . 
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Claim: 
 
The Schulze method, as defined in section 2.2, is prudent. 
 

Proof: 
 
The proof is trivial. With (2.2.4), we get: ab ∈ , unless the link ab is in 

a directed cycle that consists of links of which each is at least as strong as 
the link ab.          □ 

 
Example 1 

 
In example 1 (section 3.1), the strongest directed cycle (measured by the 

strength of its weakest link) is a,(14,7),c,(15,6),b,(13,8),a with a strength of 
λD ≈D (13,8). So prudence says that the collective ranking  must respect all 
links that are stronger than (13,8). 

 
(N[d,b],N[b,d]) = (19,2) D (13,8) ≈D λD ⇒ db ∈ . 
 
(N[c,b],N[b,c]) = (15,6) D (13,8) ≈D λD ⇒ cb ∈ . 
 
(N[a,c],N[c,a]) = (14,7) D (13,8) ≈D λD ⇒ ac ∈ . 
 
With db ∈ , cb ∈ , and ac ∈ , we get b ∉  and c ∉ . 
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4.10. Schwartz 
 
The Schwartz criterion as a criterion for single-winner election methods 

has been proposed by Schwartz (1986). The Schwartz criterion implies the 
Smith criterion. 

 
A chain from alternative x ∈ A to alternative y ∈ A is a sequence of 

alternatives c(1),...,c(n) ∈ A with the following properties: 
 

1. x ≡ c(1). 
2. y ≡ c(n). 
3. 2 ≤ n < ∞. 
4. For all i = 1,...,(n–1): c(i+1) ∈ A \ {c(i)}. 
5. For all i = 1,...,(n–1): N[c(i),c(i+1)] > N[c(i+1),c(i)]. 

 
Definition: 

An election method satisfies the Schwartz criterion if the following holds: 
 

Suppose there is a chain from alternative a ∈ A to alternative b ∈ A 
and no chain from alternative b to alternative a. Then: 

 
(4.10.1) ab ∈ . 
 
(4.10.2) b ∉ . 
 

Claim: 
 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the Schwartz criterion. 
 

Proof: 
  
The proof is trivial.         □ 
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4.11. Weak Condorcet Winners and Weak Condorcet Losers 
 

4.11.1. Weak Condorcet Winners 
 

A Condorcet winner is an alternative a ∈ A that wins every head-to-head 
contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.1.1) Alternative a ∈ A is a Condorcet winner : ⇔ 
N[a,b] > N[b,a] for all b ∈ A \ {a}. 

 

A weak Condorcet winner is an alternative a ∈ A that doesn’t lose any 
head-to-head contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.1.2) Alternative a ∈ A is a weak Condorcet winner : ⇔ 
N[a,b] ≥ N[b,a] for all b ∈ A \ {a}. 

 

Suppose  is the set of weak Condorcet winners. Then we get: 

(4.11.1.3) a ∈  : ⇔ N[a,b] ≥ N[b,a] for all b ∈ A \ {a}. 
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A frequently stated desideratum says that, when there is a weak 
Condorcet winner, then it should win. 

When there happens to be exactly one potential winner x ∈ A and exactly 
one weak Condorcet winner y ∈ A, it is obvious what the above desideratum 
means: Alternative x and alternative y must be the same alternative. 

In other words: 

(4.11.1.4) |  | = 1 and |  | = 1 ⇒  = . 

However, when there happens to be more than one potential winner or 
more than one weak Condorcet winner, the proper formulation for the above 
desideratum isn’t obvious. The most intuitive formulation is: 

(4.11.1.5)  ≠ ∅ ⇒  ⊆ . 

Formulation (4.11.1.5) says that, when there is at least one weak 
Condorcet winner, then every potential winner should be a weak Condorcet 
winner. Unfortunately, the following example demonstrates that (4.11.1.5) is 
incompatible with reversal symmetry: 

Suppose there are four alternatives A = {a,b,c,d}. Suppose  
Nold[a,b] = Nold[b,a], Nold[a,c] = Nold[c,a], Nold[a,d] = Nold[d,a],  
Nold[b,c] > Nold[c,b], Nold[c,d] > Nold[d,c], and Nold[d,b] > Nold[b,d]. 
Then we get old = {a}. With (4.11.1.5) and the requirement that old 
must not be empty, we get old = {a}. 

When the individual preferences are reversed, as defined               
in (4.4.1), we get Nnew[a,b] = Nnew[b,a], Nnew[a,c] = Nnew[c,a],                  
Nnew[a,d] = Nnew[d,a], Nnew[b,c] < Nnew[c,b], Nnew[c,d] < Nnew[d,c], and 
Nnew[d,b] < Nnew[b,d]. Therefore, we get new = {a}. With (4.11.1.5) 
and the requirement that new must not be empty, we get new = {a}. 

But old = {a} and new = {a} together contradict (4.4.4). 

In short: It can happen that the same alternative is the unique weak 
Condorcet winner in the original situation and, simultaneously, the unique 
weak Condorcet winner in the reversed situation. Therefore, (4.11.1.5) 
cannot be compatible with reversal symmetry. 
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Furthermore, the following example demonstrates that (4.11.1.5) is 
incompatible with independence of clones: 

Suppose there are only two alternatives Aold = {a,b}. Suppose 
N[a,b] = N[b,a]. Then we get old = {a,b}. With (4.11.1.5), we get  
old ⊆ {a,b}. 

Case I: Suppose a ∈ old. When alternative a is replaced by 
alternatives a1,a2,a3 such that N[a1,a2] > N[a2,a1], N[a2,a3] > N[a3,a2], 
and N[a3,a1] > N[a1,a3] and such that (4.6.1) – (4.6.3) are satisfied, we 
get new = {b}. With (4.11.1.5) and the requirement that new must not 
be empty, we get new = {b}. But with (4.6.7) and a ∈ old, we get 
new ∩ {a1,a2,a3} ≠ ∅. As new = {b} and new ∩ {a1,a2,a3} ≠ ∅ are 
incompatible, we get a ∉ old. 

Case II: Suppose b ∈ old. When alternative b is replaced by 
alternatives b1,b2,b3 such that N[b1,b2] > N[b2,b1], N[b2,b3] > N[b3,b2], 
and N[b3,b1] > N[b1,b3] and such that (4.6.1) – (4.6.3) are satisfied, we 
get new = {a}. With (4.11.1.5) and the requirement that new must not 
be empty, we get new = {a}. But with (4.6.7) and b ∈ old, we get 
new ∩ {b1,b2,b3} ≠ ∅. As new = {a} and new ∩ {b1,b2,b3} ≠ ∅ are 
incompatible, we get b ∉ old. 

However, a ∉ old and b ∉ old together are incompatible with the 
requirement that old must not be empty. 

In short: When a weak Condorcet winner is replaced by a set of clones, as 
defined in (4.6.1) – (4.6.3), it is not guaranteed that at least one of these 
clones is a weak Condorcet winner. Therefore, (4.11.1.5) cannot be 
compatible with independence of clones. 

The above examples demonstrate that, to satisfy reversal symmetry and 
independence of clones, we have, in some situations, to allow alternatives, 
which are not weak Condorcet winners, to be among the potential winners. 

So the maximum, that we could ask for, is: 

(4.11.1.6)  ⊆ . 

Formulation (4.11.1.6) says that every weak Condorcet winner should be 
a potential winner, but it makes no stipulations about those alternatives which 
are not weak Condorcet winners. In (4.11.1.6), the presumption “  ≠ ∅ ” is 
not needed. We don’t have to write “  ≠ ∅ ⇒  ⊆  ” because the empty 
set is, by definition, subset of every set. 
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The following proof demonstrates that the Schulze method satisfies 
(4.11.1.6) and that, therefore, (4.11.1.6) is compatible with reversal 
symmetry and independence of clones. 

Claim: 

If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 
section 2.2, satisfies (4.11.1.6). 

Proof: 

Step 1: 

(2.1.4) says that all ties have equivalent strengths. So without loss of 
generality, we can set 

(4.11.1.7) ∀ x ∈ 0: (x,x) ≈D (1,1). 

Step 2: 

Suppose a ∈ A is a weak Condorcet winner. Then, for every b ∈ A \ {a}, 
the link ab is already a path from alternative a to alternative b that contains 
no defeat. Therefore, with (2.1.5) and (4.11.1.7), we get 

(4.11.1.8) ∀ a ∈  ∀ b ∈ A \ {a}: PD[a,b] D (N[a,b],N[b,a]) D (1,1). 

Step 3: 

Suppose a ∈ A is a weak Condorcet winner. Suppose b ∈ A \ {a}. 
Suppose the link ca is the last link in the strongest path from alternative b to 
alternative a. As alternative a is a weak Condorcet winner, the link ca is 
either a tie or a defeat. Therefore, with (2.1.5) and (4.11.1.7), we get 

(4.11.1.9) ∀ a ∈  ∀ b ∈ A \ {a} ∃ c ∈ A \ {a}: PD[b,a] D (N[c,a],N[a,c]) D (1,1). 

With (4.11.1.8) and (4.11.1.9), we get 

(4.11.1.10) ∀ a ∈  ∀ b ∈ A \ {a}: PD[a,b] D PD[b,a]. 

With (4.11.1.10), we get 

(4.11.1.11) a ∈  ⇒ a ∈ . 

With (4.11.1.11), we get (4.11.1.6).        □ 
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The following desideratum reduces the scenarios where some alternative, 
that is not a weak Condorcet winner, can be a potential winner: 

 
(4.11.1.12) ∀ a ∈  ∀ b ∈ (  \  ): N[a,b] = N[b,a]. 
 
Desideratum (4.11.1.12) says that some alternative, that is not a weak 

Condorcet winner, can be a potential winner only when it pairwise ties all 
weak Condorcet winners. 

 
Claim: 

If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 
satisfies (4.11.1.12). 

Proof: 

Suppose a ∈  and b ∈ (  \  ). 

Step 1: 

N[a,b] < N[b,a] is a contradiction to the presumption that alternative a is 
a weak Condorcet winner. 

Step 2: 

It remains to be proven that N[a,b] > N[b,a] is not possible. 

So suppose N[a,b] > N[b,a]. Then ab is already a path from alternative a 
to alternative b that contains no tie and no defeat. Therefore, we get 

(4.11.1.13) PD[a,b] D (N[a,b],N[b,a]). 

Suppose the link ca is the last link in the strongest path from alternative b 
to alternative a. Then we get 

(4.11.1.14) PD[b,a] D (N[c,a],N[a,c]). 

As alternative a is a weak Condorcet winner, the link ca is either a tie or 
a defeat. Therefore, with (2.1.5), we get 

(4.11.1.15) (N[a,b],N[b,a]) D (N[c,a],N[a,c]). 

With (4.11.1.13), (4.11.1.14), and (4.11.1.15), we get 

(4.11.1.16) PD[b,a] D (N[c,a],N[a,c]) D (N[a,b],N[b,a]) D PD[a,b]. 

So alternative a disqualifies alternative b. But this is a contradiction to 
the presumption that alternative b is a potential winner.     □ 
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4.11.2. Weak Condorcet Losers 
 

A Condorcet loser is an alternative a ∈ A that loses every head-to-head 
contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.2.1) Alternative a ∈ A is a Condorcet loser : ⇔ 
N[a,b] < N[b,a] for all b ∈ A \ {a}. 

 

A weak Condorcet loser is an alternative a ∈ A that doesn’t win any 
head-to-head contest with some other alternative b ∈ A \ {a}. In other words: 

(4.11.2.2) Alternative a ∈ A is a weak Condorcet loser : ⇔ 
N[a,b] ≤ N[b,a] for all b ∈ A \ {a}. 

 

Suppose  is the set of weak Condorcet losers. Then we get: 

(4.11.2.3) a ∈  : ⇔ N[a,b] ≤ N[b,a] for all b ∈ A \ {a}. 
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A frequently stated desideratum says that a weak Condorcet loser should 
not be a potential winner. So with (4.11.2.3), we get 

(4.11.2.4) ∀ a ∈ A: ( a ∈  ⇒ a ∉  ). 

However, a problem with desideratum (4.11.2.4) is that it can happen that 
every alternative is a weak Condorcet loser. In this case, (4.11.2.4) is 
incompatible with the requirement that  must not be empty. 

It can also happen that every weak Condorcet loser is, simultaneously, a 
weak Condorcet winner. In this case, (4.11.2.4) is incompatible with 
(4.11.1.6). 

Example: Suppose there are only C = 2 alternatives a,b ∈ A. Suppose 
there is a pairwise tie, N[a,b] = N[b,a]. Then both alternatives are weak 
Condorcet losers and, simultaneously, weak Condorcet winners. (4.11.1.6) 
says: a ∈  and b ∈ . (4.11.2.4) says: a ∉  and b ∉ . 

So the maximum, that we could ask for, is: 

(4.11.2.5) ∀ a ∈ A: ( a ∈  and a ∉  ⇒ a ∉  ). 

Desideratum (4.11.2.5) says that a weak Condorcet loser should not win, 
unless it is also a weak Condorcet winner. The following proof demonstrates 
that the Schulze method satisfies (4.11.2.5) and that, therefore, there is no 
need to weaken (4.11.2.5) any further. 

Claim: 

If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 
satisfies (4.11.2.5). 

Proof: 

With a ∈ , we get 

(4.11.2.6) ∀ b ∈ A \ {a}: N[a,b] ≤ N[b,a]. 

With a ∉ , we get 

(4.11.2.7) ∃ b ∈ A \ {a}: N[a,b] < N[b,a]. 

When we take the alternative b ∈ A \ {a} from (4.11.2.7), then the link ba 
is already a path from alternative b to alternative a that contains no tie or 
defeat. 

Suppose the link ac is the first link in the strongest path from alternative 
a to alternative b. As alternative a is a weak Condorcet loser, the link ac is 
either a tie or a defeat. Therefore, with (2.1.5), (4.11.2.6), and (4.11.2.7), we 
get 

(4.11.2.8) PD[b,a] D (N[b,a],N[a,b]) D (N[a,c],N[c,a]) D PD[a,b]. 

So alternative b disqualifies alternative a. So a ∉ .     □ 
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Another frequently stated desideratum says that a weak Condorcet loser 
should not be a unique winner. So with (4.11.2.3), we get 

(4.11.2.9) ∀ a ∈ A: ( a ∈  ⇒  ≠ {a} ). 

Claim: 

If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 
section 2.2, satisfies (4.11.2.9). 

Proof: 

Step 1: 

(2.1.4) says that all ties have equivalent strengths. So without loss of 
generality, we can set 

(4.11.2.10) ∀ x ∈ 0: (x,x) ≈D (1,1). 

Step 2: 

Suppose a ∈ A is a weak Condorcet loser. Then, for every b ∈ A \ {a}, 
the link ba is already a path from alternative b to alternative a that contains 
no defeat. Therefore, with (2.1.5) and (4.11.2.10), we get 

(4.11.2.11) ∀ a ∈  ∀ b ∈ A \ {a}: PD[b,a] D (N[b,a],N[a,b]) D (1,1). 

Step 3: 

Suppose a ∈ A is a weak Condorcet loser. Suppose b ∈ A \ {a}. Suppose 
the link ac is the first link in the strongest path from alternative a to 
alternative b. As alternative a is a weak Condorcet loser, the link ac is either 
a tie or a defeat. Therefore, with (2.1.5) and (4.11.2.10), we get 

(4.11.2.12) ∀ a ∈  ∀ b ∈ A \ {a} ∃ c ∈ A \ {a}: PD[a,b] D (N[a,c],N[c,a]) D (1,1). 

With (4.11.2.11) and (4.11.2.12), we get 

(4.11.2.13) ∀ a ∈  ∀ b ∈ A \ {a}: PD[b,a] D PD[a,b]. 

Step 4: 

As  is transitive, there is an alternative d in A \ {a} that is not 
disqualified by any other alternative in A \ {a}. We get 

(4.11.2.14) ∃ d ∈ A \ {a} ∀ e ∈ A \ {a,d}: ed ∉ . 

With (4.11.2.13), we get that alternative a doesn’t disqualify alternative 
d. With (4.11.2.14), we get that no other alternative e ∈ A \ {a,d} disqualifies 
alternative d. Therefore, alternative d is a potential winner. Therefore, we get 
d ∈ . Therefore, we get  ≠ {a}. Therefore, we get (4.11.2.9).    □ 
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4.12. Increasing Sequential Independence 
 

Increasing sequential independence says that, when alternative a ∈ A is a 
winner, then there must be an alternative d ∈ A \ {a} such that, when the 
used election method is applied to A \ {d}, then alternative a is still a winner. 

The name for this criterion comes from the fact that  when the used 
election method satisfies this criterion and when alternative a ∈ A is a winner 
and alternative d(1) ∈ A \ {a} is an alternative such that, when the used 
election method is applied to A \ {d(1)}, then alternative a is still a winner  
the same criterion can then be applied to A \ {d(1)} to identify an alternative 
d(2) ∈ A \ {a,d(1)} such that, when the used election method is applied        
to A \ {d(1),d(2)}, then alternative a is still a winner. When we continue 
applying this criterion, we get a linear order d(1),...,d(C–1) of the alternatives 
in A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a winner 
when the used election method is applied to A \ {d(1),...,d(i)}. 

The motivation for this criterion is that an alternative a ∈ A should        
be able to win only by disqualifying all the other alternatives directly or 
indirectly in some manner. It should not be possible that some alternatives  
∅ ≠ {d(1),...,d(i)} ⊊ A disqualify each other in such a manner that the final 
winner comes from outside of {d(1),...,d(i)}. When increasing sequential 
independence is satisfied, then one alternative after the other is disqualified, 
so that the final winner a ∈ A can come from outside of {d(1),...,d(i)} only 
when the last remaining alternative d(j) ∈ {d(1),...,d(i)} is disqualified by 
some alternatives outside of {d(1),...,d(i)}. 

Increasing sequential independence and decreasing sequential 
independence (section 4.14) as criteria for single-winner election methods 
have been proposed by Arrow and Raynaud (1986) and generalized by 
Lansdowne (1996). 

Definition #1: 
 

An election method satisfies the first version of increasing sequential 
independence if the following holds: 

 
Suppose alternative a ∈ A is a unique winner when this election 
method is applied to A. Then there must be a (not necessarily 
unique) alternative d ∈ A \ {a} such that, when this election method 
is applied to A \ {d}, then alternative a is still a unique winner. 

 
Claim #1: 

 
The Schulze method, as defined in section 2.2, satisfies the first version 

of increasing sequential independence. 
 

Proof of claim #1: 
 
Suppose alternative a ∈ A is a unique winner when this election method 

is applied to A. Then, according to (4.1.15), alternative a disqualifies every 
other alternative b ∈ A \ {a}. Therefore, we get 

(4.12.1) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 
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Suppose predold[a,x] is the predecessor of alternative x ∈ A \ {a} in the 
strongest path from alternative a to alternative x, as calculated in section 2.3. 
Then a leaf is an alternative y ∈ A \ {a} such that there is no alternative          
x ∈ A \ {a} with predold[a,x] = y. As the strongest paths from alternative a to 
every other alternative x ∈ A \ {a}, as calculated by the Floyd-Warshall 
algorithm, form an arborescence, there must be at least one leaf. Alternative d 
is chosen arbitrarily from these leaves. 

 
Suppose alternative d is removed. As alternative d is a leaf, alternative d 

is not in the strongest path from alternative a to any other alternative            
b ∈ A \ {a,d}. Therefore, we get 

 
(4.12.2) ∀ b ∈ A \ {a,d}: P new

D [a,b] ≈D P old
D [a,b]. 

On the other side, when an alternative is removed, then the strengths of 
the strongest paths can only decrease. Therefore, we get 

(4.12.3) ∀ b ∈ A \ {a,d}: P new
D [b,a] D P old

D [b,a]. 

With (4.12.2), (4.12.1), and (4.12.3), we get 

(4.12.4) ∀ b ∈ A \ {a,d}: P new
D [a,b] ≈D P old

D [a,b] D P old
D [b,a] D P new

D [b,a] 

so that alternative a is still a unique winner when alternative d is 
removed.           □ 

Definition #2: 
 

An election method satisfies the second version of increasing sequential 
independence if the following holds: 

 
Suppose alternative a ∈ A is a potential winner when this election 
method is applied to A. Then there must be a (not necessarily 
unique) alternative d ∈ A \ {a} such that, when this election method 
is applied to A \ {d}, then alternative a is still a potential winner. 

 
Claim #2: 

 
The Schulze method, as defined in section 2.2, satisfies the second version 

of increasing sequential independence. 
 

Proof of claim #2: 
 
Suppose alternative a ∈ A is a potential winner when this election method 

is applied to A. Then, we get 

(4.12.5) ∀ b ∈ A \ {a}: P old
D [a,b] D P old

D [b,a]. 

The rest of this proof is identical to the proof of claim #1.     □ 
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4.13. k-Consistency 
 
The Condorcet criterion says that, when some candidate a ∈ A wins every 

head-to-head contest, then this candidate a should also be the overall winner 
(Condorcet, 1785). 

However, many countries have a strong 3-party, 4-party or 5-party 
system where no single party can win a majority and where every party is 
willing to coalesce with every other party. In such a scenario, it seems to be 
rather uninteresting which candidate might win in a head-to-head contest. It 
is more interesting to ask whether there is some candidate who wins 
regardless of which candidates are nominated by the other parties. 

So for example in the 3-party case with party α, party β, and party γ, it 
might be more interesting to ask whether there is a candidate from party α 
who wins every 3-way contest between himself and a candidate from party β 
and a candidate from party γ. If there is such a candidate, then this candidate 
should also be the overall winner. 

More generally, if there is a k ∈  with k ≥ 2 such that there is an 
alternative a ∈ A such that alternative a wins every k-way contest, then 
alternative a should also be the overall winner. This criterion is called         
k-set-consistency (Heitzig, 2004) or k-consistency (Simmons, 2004). 

k-consistency as a criterion for single-winner election methods has been 
proposed by Heitzig (2004) and Simmons (2004). However, a similar      
idea had already been formulated by Saari (Saari, 2001, pages 154–156; 
Lagerspetz, 2015, page 207). To question the relevance of the Condorcet 
criterion, Saari argued that it could happen that some alternative a ∈ A wins 
every 2-way contest, some other alternative b ∈ A \ {a} wins every 3-way 
contest, some other alternative c ∈ A \ {a,b} wins every 4-way contest, etc., 
so that, with the same justification, every alternative could claim to be       
the overall winner. However, the fact that the Schulze method satisfies              
k-consistency for every k ∈  with k ≥ 2 means that there are election 
methods where it is impossible to create examples such that there are         
m,n ∈  with 2 ≤ m < n ≤ C such that some alternative a ∈ A wins every    
m-way contest and some other alternative b ∈ A \ {a} wins every n-way 
contest. So for these election methods, Saari’s scenario is not possible, so 
that his criticism of the Condorcet criterion doesn’t work. 
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There are five different versions for k-consistency. 

The first version addresses unique winners. This version says that, when 
alternative a ∈ A is a unique winner in every k-way contest, then alternative a 
should also be a unique winner overall. For k = 2, the first version of            
k-consistency is identical to the Condorcet criterion (section 4.7). 

The second version addresses potential winners. This version says that, 
when alternative a ∈ A is a potential winner in every k-way contest, then 
alternative a should also be a potential winner overall. For k = 2, the second 
version of k-consistency is identical to the desideratum that weak Condorcet 
winners should always be potential winners; equation (4.11.1.6). 

The third version addresses the set of potential winners. This version says 
that, when in every k-way contest (that contains at least one alternative of the 
set ∅ ≠ B ⊊ A) the winner comes from the set B, then the winner must also 
come from the set B when the method is applied to A. For k = 2, the third 
version of k-consistency is identical to the Smith criterion (section 4.7). 

The fourth version says that, when alternative a ∈ A is not a unique 
winner in any k-way contest, then alternative a should also be not a unique 
winner overall. For k = 2, the fourth version of k-consistency is identical to 
the desideratum that a weak Condorcet loser should not be a unique winner; 
equation (4.11.2.9). 

The fifth version says that, when alternative a ∈ A is not a potential 
winner in any k-way contest, then alternative a should also be not a potential 
winner overall. For k = 2, the fifth version of k-consistency is identical to the 
Condorcet loser criterion (section 4.7). 
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4.13.1. Formulation #1 
 
Definition: 
 

Suppose k ∈  with k ≥ 2. An election method satisfies the first version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose alternative 
a ∈ A is a unique winner whenever this election method is applied to 
some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. Then alternative a is also 
a unique winner when this election method is applied to A. 

 
Claim: 

 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the first version of k-consistency for every k ∈  with k ≥ 2. 
 

Proof (overview): 
 
We will show how, when alternative a ∈ A is not a unique winner (when 

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is not a unique winner. 

Proof (details): 
 
Suppose alternative a ∈ A is not a unique winner when the Schulze 

method is applied to A. Then there must be an alternative b ∈ A \ {a} with 
 
(4.13.1.1) PD[b,a] D PD[a,b]. 
 
We set 
 
(4.13.1.2) (z1,z2) : = PD[b,a] 
 
to stress that this value is constant for the rest of this proof. 
 
Suppose c(1),...,c(n) is the strongest path from alternative b ≡ c(1) to 

alternative a ≡ c(n). Then we get 
 
(4.13.1.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
Especially, we get 
 
(4.13.1.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
When there is more than one path from alternative b to alternative a of 

strength (z1,z2) then, without loss of generality, we take the shortest of these 
paths (in terms of its number of links). Therefore, we get 

 
(4.13.1.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
 
Otherwise, if there was a link c(i),c(j) with (N[c(i),c(j)],N[c(j),c(i)]) D 

(z1,z2) and j – i ≥ 2, then we could find a shorter path of strength (z1,z2) by 
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omitting the alternatives c(i+1),...,c(j–1). This would be a contradiction to 
the presumption that c(1),...,c(n) is the shortest path of strength (z1,z2). 

 
With (2.1.5), we get that every path that contains no defeat is always 

stronger than every path that contains a defeat. 
 
It is easy to prove that, for every pair of alternatives x,y ∈ A, there is a 

path from alternative x to alternative y that contains no defeat or a path from 
alternative y to alternative x that contains no defeat. To prove this, we only 
have to consider the links xy and yx because the link xy is already a path 
from alternative x to alternative y and the link yx is already a path from 
alternative y to alternative x. If N[x,y] > N[y,x], then the link xy is a path 
from alternative x to alternative y that contains no defeat. If N[x,y] < N[y,x], 
then the link yx is a path from alternative y to alternative x that contains no 
defeat. If N[x,y] = N[y,x], then the link xy is a path from alternative x to 
alternative y that contains no defeat and the link yx is a path from alternative 
y to alternative x that contains no defeat. 

 
With (4.13.1.1) and the above considerations, we get that the path 

c(1),...,c(n) contains no defeat. {Otherwise: Suppose the path c(1),...,c(n) 
contains a defeat. Then [as, for every pair of alternatives x,y ∈ A, there is a 
path from alternative x to alternative y that contains no defeat or a path from 
alternative y to alternative x that contains no defeat] there must be a path 
d(1),...,d(r) from alternative b to alternative a that contains no defeat or a 
path e(1),...,e(s) from alternative a to alternative b that contains no defeat. If 
there is a path d(1),...,d(r) from alternative b to alternative a that contains no 
defeat then, according to (2.1.5), this path is stronger than the path 
c(1),...,c(n) that contains a defeat; this is a contradiction to the presumption 
that the path c(1),...,c(n) is the strongest path from alternative b to alternative 
a. If there is no path from alternative b to alternative a that contains no 
defeat, but a path e(1),...,e(s) from alternative a to alternative b that contains 
no defeat then, according to (2.1.5), this path is stronger than the path 
c(1),...,c(n) that contains a defeat; this is a contradiction to (4.13.1.1).} 
Especially, the link c(n–1),c(n) is not a defeat. Therefore, we get 

 
(4.13.1.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] ≥ N[c(i+1),c(i)]. 
 
Especially, we get 
 
(4.13.1.7) N[c(n–1),c(n)] ≥ N[c(n),c(n–1)]. 
 
With (2.1.5) and (4.13.1.7), we get 
 
(4.13.1.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
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With the above considerations, we can now show how the subset Ã ⊆ A 
can be chosen. 

 
Case #1: k = 2. 

 
When D satisfies (2.1.5), then the first version of 2-consistency, 
applied to the Schulze method, means that the Schulze method 
should satisfy the Condorcet criterion. However, it has already 
been proven in section 4.7 that the Schulze method satisfies the 
Condorcet criterion when D satisfies (2.1.5). 
 

Case #2: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.1.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of more than (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.1.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.1.8), the link c(n),c(n–1) is not 
stronger than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n) cannot disqualify alternative c(n–1). So 
either alternative c(n–1) is also a potential winner or, according to 
(4.1.14), alternative c(n–1) must be disqualified by some other 
potential winner. In both cases, alternative c(n) is not a unique 
winner. 
 

Case #3: k ≥ n. 
 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.1.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of more than (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(n) cannot disqualify alternative c(1). So 
either alternative c(1) is also a potential winner or, according to 
(4.1.14), alternative c(1) must be disqualified by some other 
potential winner. In both cases, alternative c(n) is not a unique 
winner.          □ 
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4.13.2. Formulation #2 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the second 
version of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose alternative 
a ∈ A is a potential winner whenever this election method is applied 
to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. Then alternative a is 
also a potential winner when this election method is applied to A. 

 
Claim: 

 
If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 

section 2.2, satisfies the second version of k-consistency for every k ∈  
with k ≥ 2. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is not a potential winner 

(when this election method is applied to A), we can create, for every k ∈  
with 2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is not a potential winner. 

Proof (details): 
 
Suppose alternative a ∈ A is not a potential winner when the Schulze 

method is applied to A. Then there must be an alternative b ∈ A \ {a} with 
 
(4.13.2.1) PD[b,a] D PD[a,b]. 
 
We set 
 
(4.13.2.2) (z1,z2) : = PD[b,a] 
 
to stress that this value is constant for the rest of this proof. 
 
Suppose c(1),...,c(n) is the strongest path from alternative b ≡ c(1) to 

alternative a ≡ c(n). Then we get 
 
(4.13.2.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
Especially, we get 
 
(4.13.2.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
With the same arguments as for (4.13.1.5), we get 
 
(4.13.2.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
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With (2.1.4) and (2.1.5), we get that every path that contains no defeat or 
tie is always stronger than every path that contains a defeat or tie. 

 
It is easy to prove that the path c(1),...,c(n) contains no defeat or tie. 

Therefore, we get 
 
(4.13.2.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] > N[c(i+1),c(i)]. 
 
Especially, we get 
 
(4.13.2.7) N[c(n–1),c(n)] > N[c(n),c(n–1)]. 
 
With (2.1.5) and (4.13.2.7), we get 
 
(4.13.2.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
 
Proof for (4.13.2.6): 
 

It has already been shown in the proof in section 4.13.1 that, when 
D satisfies (2.1.5), then the path c(1),...,c(n) contains no defeat. So it 
remains to be proven that the path c(1),...,c(n) contains no tie. 

 
To prove that the path c(1),...,c(n) contains no tie, we presume   

that (2.1.4), (2.1.5), and (4.13.2.1) are satisfied and that the path 
c(1),...,c(n) contains a tie and then we will show that this leads to a 
contradiction. 

 
(2.1.4) says that all ties have equivalent strengths. (2.1.5) says that 

every win is stronger than every tie. So when the path c(1),...,c(n) 
contains no defeat, but at least one tie then, without loss of generality, 
we can set 

(4.13.2.9) PD[b,a] ≈D (1,1). 
 
To get to a contradiction, it is sufficient to consider the link ab. 
 
Case #A: If the link ab is a win ( i.e. N[a,b] > N[b,a] ) or a tie         

( i.e. N[a,b] = N[b,a] ), then this link is already a path from alternative 
a to alternative b that contains no defeat. Therefore, with (2.1.4), 
(2.1.5), and (4.13.2.9), we get PD[a,b] D (N[a,b],N[b,a]) D (1,1) ≈D 
PD[b,a]. But this is a contradiction to (4.13.2.1). 

 
Case #B: If the link ab is a defeat ( i.e. N[a,b] < N[b,a] ), then the 

link ba is a path from alternative b to alternative a that contains no 
defeat or tie. But then, according to (2.1.5), the link ba is stronger than 
the path c(1),...,c(n) that contains a tie. But this is a contradiction to 
the presumption that the path c(1),...,c(n) is the strongest path from 
alternative b to alternative a. 
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With the above considerations, we can now show how the subset Ã ⊆ A 
can be chosen. 

 
Case #1: k = 2. 

 
When D satisfies (2.1.4) and (2.1.5), then the second version       
of 2-consistency, applied to the Schulze method, means that        
the Schulze method should satisfy the desideratum that a weak 
Condorcet winner is always a potential winner. However, it has 
already  been proven in section 4.11 that the Schulze method 
satisfies this desideratum when D satisfies (2.1.4) and (2.1.5). 
 

Case #2: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.2.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.2.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.2.8), the link c(n),c(n–1) is weaker 
than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n–1) disqualifies alternative c(n), so that 
alternative c(n) is not a potential winner. 
 

Case #3: k ≥ n. 
 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.2.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of at least (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(1) disqualifies alternative c(n), so that 
alternative c(n) is not a potential winner.     □ 
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4.13.3. Formulation #3 
 
Definition: 
 

Suppose k ∈  with k ≥ 2. An election method satisfies the third version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose |Ã is 
the set of potential winners when this election method is applied to 
∅ ≠ Ã ⊆ A. Suppose ∅ ≠ B ⊊ A. Suppose |Ã ⊆ B whenever this 
election method is applied to some subset Ã ⊆ A with | Ã | = k and 
B ∩ Ã ≠ ∅. Then we must also get |A ⊆ B. In short: 
 
∀ ∅ ≠ B ⊊ A: ( ( ∀ Ã ⊆ A with | Ã | = k and B ∩ Ã ≠ ∅: |Ã ⊆ B ) ⇒ ( |A ⊆ B ) ). 

 
Claim: 

 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the third version of k-consistency for every k ∈  with k ≥ 2. 
 

Proof (overview): 
 
We will show how, when |A  B, we can create, for every k ∈  with     

2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and B ∩ Ã ≠ ∅ such that, when the 
Schulze method is applied to Ã, we get |Ã  B. 

Proof (details): 
 
Suppose r : = | B | is the number of alternatives in B. With ∅ ≠ B ⊊ A, we 

get: 0 < r < C. 
 
Suppose |A  B. Then there must be an alternative b ∈ A with b ∈ |A 

and b ∉ B. With b ∈ |A we get 
 
(4.13.3.1) ∀ a ∈ A \ {b}: PD[b,a] D PD[a,b]. 
 

Case #1: k = 2. 
 
When D satisfies (2.1.5), then the third version of 2-consistency, 
applied to the Schulze method, means that the Schulze method 
should satisfy the Smith criterion. However, it has already been 
proven in section 4.7 that the Schulze method satisfies the Smith 
criterion when D satisfies (2.1.5). 
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Case #2: k > C – r. 
 

In section 4.12, we have proven that, when alternative b ∈ A is a 
potential winner, then there is a linear order d(1),...,d(C–1) of the 
alternatives in A \ {b}, such that, when the Schulze method is 
applied to A \ {d(1),...,d(C–k)}, then alternative b is still a potential 
winner. 
 
As k > C – r, every set Ã ⊆ A with | Ã | = k contains at least            
k + r – C ≥ 1 alternatives of B. Therefore, we get B ∩ Ã ≠ ∅ for 
every set Ã ⊆ A with | Ã | = k. Therefore, we can choose Ã : =        
A \ {d(1),...,d(C–k)}. 

 
Case #3: 3 ≤ k ≤ C – r. 
 

We take some b ∈ A with b ∈ |A and b ∉ B. We sort the alternatives 
{a(1),...,a(C–1)} in A \ {b} such that 

 
∀ i,j ∈  with 1 ≤ i < C and 1 ≤ j < C: ( pred[b,a(j)] = a(i) ⇒ i < j ). 
 
Suppose y ∈  with 1 ≤ y < C is the smallest number with a(y) ∈ B. Then 

we get a(x) ∉ B for all x ∈  with 1 ≤ x < y. Furthermore, when d(1),...,d(m) 
is the strongest path from alternative b ≡ d(1) to alternative a(y) ≡ d(m) then, 
with the definition for pred[i,j] and with the definition for the order of 
{a(1),...,a(C–1)}, we get {d(1),...,d(m–1)} ⊆ {b,a(1),...,a(y–1)} ⊆ A \ B. 

 
We set 
 
(4.13.3.2) (z1,z2) : = PD[b,a(y)] 
 
to stress that this value is constant for the rest of this proof. 
 
We now shorten the path d(1),...,d(m) by removing possible short cuts.  

So when there is a link d(i),d(j) with (N[d(i),d(j)],N[d(j),d(i)]) D (z1,z2) and  
j – i ≥ 2, we remove the alternatives d(i+1),...,d(j–1) from this path. We 
continue removing possible short cuts, until the resulting path contains no 
short cuts anymore. The resulting path will be called c(1),...,c(n). 

 
We get c(i) ∉ B for all i ∈  with 1 ≤ i < n, because we have already 

established d(i) ∉ B for all i ∈  with 1 ≤ i < m and because, when we 
shortened the path d(1),...,d(m), we only removed and didn’t add alternatives. 

 
With the same arguments as for (4.13.1.3) – (4.13.1.8), we get (4.13.3.3) – (4.13.3.8): 
 
(4.13.3.3) ∀ i = 1,...,(n–1): (N[c(i),c(i+1)],N[c(i+1),c(i)]) D (z1,z2). 
 
(4.13.3.4) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2). 
 
(4.13.3.5) ∀ i,j ∈ {1,...,n} with j – i ≥ 2: (N[c(i),c(j)],N[c(j),c(i)]) D (z1,z2). 
 
(4.13.3.6) ∀ i = 1,...,(n–1): N[c(i),c(i+1)] ≥ N[c(i+1),c(i)]. 
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(4.13.3.7) N[c(n–1),c(n)] ≥ N[c(n),c(n–1)]. 
 
(4.13.3.8) (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (N[c(n),c(n–1)],N[c(n–1),c(n)]). 
 
With the above considerations, we can now show how the subset Ã ⊆ A 

can be chosen. 
 

Case #3a: 3 ≤ k < n. 
 
Here, we choose Ã : = {c(1),...,c(k–2),c(n–1),c(n)}. 
 
When the Schulze method is applied to Ã, then there is a path from 
c(n–1) to c(n) of at least (N[c(n–1),c(n)],N[c(n),c(n–1)]) D (z1,z2) 
because, according to (4.13.3.4), already the link c(n–1),c(n) is a 
path from c(n–1) to c(n) of this strength. 
 
On the other side, there cannot be a path in Ã from c(n) to c(n–1)  
of more than (N[c(n–1),c(n)],N[c(n),c(n–1)]) because, according to 
(4.13.3.5), every link from c(1), ..., c(k–2) to c(n–1) is weaker than 
(z1,z2) and, according to (4.13.3.8), the link c(n),c(n–1) is not 
stronger than (N[c(n–1),c(n)],N[c(n),c(n–1)]). 
 
Therefore, alternative c(n) cannot disqualify alternative c(n–1). So 
either alternative c(n–1) is also a potential winner or, according to 
(4.1.14), alternative c(n–1) must be disqualified by some other 
potential winner in Ã. As c(i) ∉ B for all i ∈  with 1 ≤ i < n, this 
potential winner comes from outside B. 

 
Case #3b: n ≤ k ≤ C – r. 

 
Here, Ã consists of the alternatives c(1),...,c(n) and k–n additional 
alternatives from A \ B. 
 
As {c(1),...,c(n)} ⊆ Ã, there is a path in Ã from alternative c(1) to 
alternative c(n) of strength (z1,z2). On the other side, we get, with 
(4.13.3.1), that there cannot be a path in Ã from alternative c(n) to 
alternative c(1) of more than (z1,z2) because, when alternatives are 
removed from A, then the strength of the strongest path from 
alternative c(n) to alternative c(1) can only decrease. 
 
Therefore, alternative c(n) cannot disqualify alternative c(1). So 
either alternative c(1) is also a potential winner or, according to 
(4.1.14), alternative c(1) must be disqualified by some other 
potential winner in Ã. As e ∉ B for all e ∈ Ã \ {c(n)}, this potential 
winner comes from outside B.       □ 
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4.13.4. Formulation #4 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the fourth version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose 
alternative a ∈ A is not a unique winner whenever this election 
method is applied to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. 
Then alternative a is also not a unique winner when this election 
method is applied to A. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, satisfies the fourth version 

of k-consistency for every k ∈  with k ≥ 2. 
 

Remark: 
 
Presumptions (2.1.4) and (2.1.5) are not needed in the following proof. 

However, only when D satisfies (2.1.4) and (2.1.5), the fourth version of   
k-consistency with k = 2 is identical to the desideratum that a weak 
Condorcet loser should not be a unique winner. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is a unique winner (when   

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is a unique winner. 

Proof (details): 
 
In section 4.12, we have proven that, when alternative a ∈ A is a unique 

winner, then there is a linear order d(1),...,d(C–1) of the alternatives in         
A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a unique 
winner when the Schulze method is applied to A \ {d(1),...,d(i)}. 

Therefore, for k ∈  with 2 ≤ k ≤ C, we can simply choose                       
Ã : = A \ {d(1),...,d(C–k)}.         □ 
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4.13.5. Formulation #5 
 
Definition: 

 
Suppose k ∈  with k ≥ 2. An election method satisfies the fifth version 
of k-consistency if the following holds: 

 
Suppose C ≥ k is the number of alternatives in A. Suppose 
alternative a ∈ A is not a potential winner whenever this election 
method is applied to some subset Ã ⊆ A with | Ã | = k and a ∈ Ã. 
Then alternative a is also not a potential winner when this election 
method is applied to A. 

 
Claim: 

 
The Schulze method, as defined in section 2.2, satisfies the fifth version 

of k-consistency for every k ∈  with k ≥ 2. 
 

Remark: 
 
Presumption (2.1.5) is not needed in the following proof. However, only 

when D satisfies (2.1.5), the fifth version of k-consistency with k = 2 is 
identical to the Condorcet loser criterion. 

 
Proof (overview): 

 
We will show how, when alternative a ∈ A is a potential winner (when 

this election method is applied to A), we can create, for every k ∈  with      
2 ≤ k ≤ C, a subset Ã ⊆ A with | Ã | = k and a ∈ Ã such that, when the 
Schulze method is applied to Ã, alternative a is a potential winner. 

Proof (details): 
 
In section 4.12, we have proven that, when alternative a ∈ A is a potential 

winner, then there is a linear order d(1),...,d(C–1) of the alternatives in         
A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a is still a potential 
winner when the Schulze method is applied to A \ {d(1),...,d(i)}. 

Therefore, for k ∈  with 2 ≤ k ≤ C, we can simply choose                       
Ã : = A \ {d(1),...,d(C–k)}.         □ 
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4.14. Decreasing Sequential Independence 
 

Decreasing sequential independence says that, when alternative a ∈ A is 
not a winner, then there must be an alternative d ∈ A \ {a} such that, when 
the used election method is applied to A \ {d}, then alternative a is still not a 
winner. 

The name for this criterion comes from the fact that  when the used 
election method satisfies this criterion and when alternative a ∈ A is not a 
winner and alternative d(1) ∈ A \ {a} is an alternative such that, when the  
used election method is applied to A \ {d(1)}, then alternative a is still not a   
winner  the same criterion can then be applied to A \ {d(1)} to identify an 
alternative d(2) ∈ A \ {a,d(1)} such that, when the used election method is 
applied to A \ {d(1),d(2)}, then alternative a is still not a winner. When we 
continue applying this criterion, we get a linear order d(1),...,d(C–1) of the 
alternatives in A \ {a} such that, for every i ∈ {1,...,(C–1)}, alternative a      
is still not a winner when the used election method is applied to                    
A \ {d(1),...,d(i)}. 

Increasing sequential independence and decreasing sequential 
independence address opposite problems. On the one side, increasing 
sequential independence says that it should not be possible that alternatives 
∅ ≠ {d(1),...,d(i)} ⊊ A harm each other in such a manner that the final 
winner comes from outside of {d(1),...,d(i)}. On the other side, decreasing 
sequential independence says that, when no proper subset of {d(1),...,d(i)} 
can disqualify every alternative outside of {d(1),...,d(i)}, then the 
alternatives {d(1),...,d(i)} should not help each other in such a manner that 
{d(1),...,d(i)} together disqualify every alternative outside of {d(1),...,d(i)}. 

The fact that the Schulze method satisfies decreasing sequential 
independence follows directly from the fact that the Schulze method satisfies 
the first and the second version of k-consistency for every k ∈  with           
2 ≤ k ≤ C (sections 4.13.1 and 4.13.2). 
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Definition #1: 
 

An election method satisfies the first version of decreasing sequential 
independence if the following holds: 

 
Suppose there are at least C ≥ 3 alternatives. Suppose alternative   
a ∈ A is not a unique winner when this election method is applied 
to A. Then there must be a (not necessarily unique) alternative       
d ∈ A \ {a} such that, when this election method is applied to        
A \ {d}, then alternative a is still not a unique winner. 

 
Claim #1: 

 
If D satisfies (2.1.5), then the Schulze method, as defined in section 2.2, 

satisfies the first version of decreasing sequential independence. 
 

Proof of claim #1: 
 
Suppose alternative a ∈ A is not a unique winner when this election 

method is applied to A. In section 4.13.1, we have shown that, when 
alternative a ∈ A is not a unique winner (when this election method is 
applied to A), we can create, for every k ∈  with 2 ≤ k ≤ C, a subset Ã ⊆ A 
with | Ã | = k and a ∈ Ã such that, when the Schulze method is applied to Ã, 
alternative a is still not a unique winner. When we choose k = C–1, we get 
the first version of decreasing sequential independence.      □ 

Definition #2: 
 

An election method satisfies the second version of decreasing 
sequential independence if the following holds: 

 
Suppose there are at least C ≥ 3 alternatives. Suppose alternative   
a ∈ A is not a potential winner when this election method is 
applied to A. Then there must be a (not necessarily unique) 
alternative d ∈ A \ {a} such that, when this election method is 
applied to A \ {d}, then alternative a is still not a potential winner. 

 
Claim #2: 

 
If D satisfies (2.1.4) and (2.1.5), then the Schulze method, as defined in 

section 2.2, satisfies the second version of decreasing sequential independence. 
 

Proof of claim #2: 
 
Suppose alternative a ∈ A is not a potential winner when this election 

method is applied to A. In section 4.13.2, we have shown that, when 
alternative a ∈ A is not a potential winner (when this election method is 
applied to A), we can create, for every k ∈  with 2 ≤ k ≤ C, a subset Ã ⊆ A 
with | Ã | = k and a ∈ Ã such that, when the Schulze method is applied to Ã, 
alternative a is still not a potential winner. When we choose k = C–1, we get 
the second version of decreasing sequential independence.     □ 
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4.15. Weak Independence from Pareto-Dominated Alternatives 
 
Suppose an alternative j is added such that: 
 
(3.6.1) ∃ i ∈ Aold ∀ v ∈ V: i  v

new  j. 
 

(3.6.2) ∀ g,h ∈ Aold ∀ v ∈ V: g  v
old  h ⇔ g  v

new  h. 
 
Then independence from Pareto-dominated alternatives (IPDA) says that 

we must get: 
 
(3.6.3) ∀ g,h ∈ Aold: gh ∈ old ⇔ gh ∈ new. 
 
(3.6.4) ∀ g ∈ Aold: g ∈ old ⇔ g ∈ new. 
 
In example 6 (section 3.6) and example 7 (section 3.7), we have seen that 

the Schulze method violates IPDA. In example 6, the winner is changed from 
alternative a ∈ Aold to alternative b ∈ Aold \ {a} by adding an alternative e with 

 
(4.15.1) ∃ d ∈ Aold \ {a,b} ∀ v ∈ V: d  v

new  e. 
 
In example 7, the winner is changed from alternative a ∈ Aold to 

alternative b ∈ Aold \ {a} by adding an alternative e with 
 
(4.15.2) ∀ v ∈ V: a  v

new  e. 
 
It has already been mentioned in section 4.8 that IPDA and (4.8.5) are 

incompatible. In example 6(old), we have B
old
D  = {a, c, d}. In example 

6(new), we have B new
D  = {b}. Therefore, B old

D  ∩ B new
D  = ∅. So (4.8.5) says 

that the winner must change. In example 7(old), we have B old
D  = {a, c, d}. In 

example 7(new), we have B
new
D  = {b} so that, again, (4.8.5) says that the 

winner must change. 
 
So we cannot exclude that the winner is changed from alternative a ∈ Aold 

to alternative b ∈ Aold \ {a} by adding an alternative e with (4.15.1) or 
(4.15.2). But we will prove that the winner cannot be changed by adding an 
alternative e with 

 
(4.15.3) ∀ v ∈ V: b  v

new  e. 
 

Definition: 

An election method satisfies weak independence from Pareto-
dominated alternatives (wIPDA) if the following holds: 

Suppose b ∉ old. 

Suppose an alternative e is added with (3.6.2) and 

(4.15.4) ∀ v ∈ V: b  v
new  e. 

Then we get: b ∉ new. 
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Claim: 

If D satisfies (2.1.1), then the Schulze method, as defined in section 2.2, 
satisfies weak independence from Pareto-dominated alternatives. 

Proof: 

Suppose b ∉ old. Then, there was an alternative a ∈ Aold \ {b} with       
ab ∈ old. With ab ∈ old, we get 

(4.15.5) P old
D [a,b] D P old

D [b,a]. 

Suppose an alternative e is added with (3.6.2) and (4.15.4). 

Suppose c(1),...,c(n) was the strongest path from alternative a to 
alternative b in Aold. Then c(1),...,c(n) is still a path from alternative a to 
alternative b in Anew of the same strength. Therefore, we get 

(4.15.6) P new
D [a,b] D P old

D [a,b]. 

Suppose d(1),...,d(m) is the strongest path from alternative b to alternative 
a in Anew. 

Case I: Suppose d(1),...,d(m) does not contain alternative e. Then 
d(1),...,d(m) was a path from alternative b to alternative a in Aold with the 
same strength. Therefore, we get: P old

D [b,a] D P new
D [b,a]. 

Case II: Suppose d(1),...,d(m) contains alternative e. Suppose d(s) is the last 
occurrence of alternative e in the path d(1),...,d(m). With (2.1.1), (4.15.4), and 
d(s) ≡ e, we get: (N[b,d(s+1)],N[d(s+1),b]) D (N[d(s),d(s+1)],N[d(s+1),d(s)]). 
So b,d(s+1),...,d(m) was a path from alternative b to alternative a in Aold of     
at least the same strength as d(1),...,d(m). Therefore, we get: P old

D [b,a] D           
P new

D [b,a]. 

So, with Case I and Case II, we get 

(4.15.7) P old
D [b,a] D P new

D [b,a]. 

With (4.15.6), (4.15.5), and (4.15.7), we get 

(4.15.8) P new
D [a,b] D P old

D [a,b] D P old
D [b,a] D P new

D [b,a]. 

With (4.15.8), we get ab ∈ new and, therefore, b ∉ new.    □ 
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5. Tie-Breaking 
 
It can happen that the weakest link in the strongest path from alternative a 

to alternative b and the weakest link in the strongest path from alternative b 
to alternative a are the same link, say cd. In this case, the Schulze method is 
indifferent between alternative a and alternative b, i.e. ab ∉  and ba ∉ . 
See sections 3.3, 3.8, 3.9, and 4.2. 

 
In this section, we recommend that, to resolve this indifference, the link 

cd should be declared forbidden and the strongest paths from alternative a   
to alternative b and from alternative b to alternative a, that don’t contain 
forbidden links, should be calculated. Either this indifference is now 
resolved or, again, the weakest link in the strongest path from alternative a  
to alternative b and the weakest link in the strongest path from alternative b    
to alternative a are the same link, say ef. In the latter case, the link ef is 
declared forbidden and the strongest paths that don’t contain forbidden links 
are calculated. This procedure is repeated until this indifference is resolved. 

 
The resulting Schulze relation will be called final. The resulting set of 

potential winners will be called final. The precise definitions for final and 
final will be given in (5.1.2) and (5.1.3). 

 
In example 3 (section 3.3), the link cd is the weakest link in the strongest 

path from alternative a to alternative b and the weakest link in the strongest 
path from alternative b to alternative a. Therefore, the link cd is declared 
forbidden. The strongest path from alternative a to alternative b, that doesn’t 
contain forbidden links, is a,(33,30),b. The strongest path from alternative b 
to alternative a, that doesn’t contain forbidden links, is b,(30,33),a. Therefore, 
we get ab ∈ final. 

 
5.1. Calculating a Complete Ranking Using 

a Tie-Breaking Ranking of the Links 
 

Suppose A×A is the set of linear orders on A × A. Then a Tie-Breaking 
Ranking of the Links (TBRL) is a linear order σ ∈ A×A with the following 
property: 

 
(5.1.1) (N[i,j],N[j,i]) D (N[m,n],N[n,m]) ⇒ ij σ mn. 
 
Suppose σ ∈ A×A is a linear order on A × A with property (5.1.1). Then 

we calculate final(σ) and final(σ) as described in stages 1–4: 
 
Stage 1 (initialization): 
 

1 for i : = 1 to C 
2 begin 
3 for j : = 1 to C 
4 begin 
5 if ( i ≠ j ) then 
6 begin 
7 Pσ[i,j] : = ij 
8 end 
9 end 

10 end 
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Stage 2 (calculation of the strengths of the strongest paths): 
 

11 for i : = 1 to C 
12 begin 
13 for j : = 1 to C 
14 begin 
15 if ( i ≠ j ) then 
16 begin 
17 for k : = 1 to C 
18 begin 
19 if ( i ≠ k ) then 
20 begin 
21 if ( j ≠ k ) then 
22 begin 
23 if ( Pσ[j,k] σ minσ { Pσ[j,i], Pσ[i,k] } ) then 
24 begin 
25 Pσ[j,k] : = minσ { Pσ[j,i], Pσ[i,k] } 
26 end 
27 end 
28 end 
29 end 
30 end 
31 end 
32 end 

 
Stage 3 (calculation of the binary relation  and the set of potential winners): 
 

33 final(σ) : = ∅ 
34 final(σ) : = A 
35 for i : = 1 to C 
36 begin 
37 for j : = 1 to C 
38 begin 
39 if ( i ≠ j ) then 
40 begin 
41 if ( Pσ[j,i] σ Pσ[i,j] ) then 
42 begin 
43 final(σ) : = final(σ) + {ji} 
44 final(σ) : = final(σ) \ {i} 
45 end 
46 end 
47 end 
48 end 
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Stage 4 (tie-breaking): 
 

49 xy : = minσ { ij | i,j ∈ {1,...,C}, i ≠ j } 
50 for m : = 1 to C–1 
51 begin 
52 for n : = m+1 to C 
53 begin 
54 if ( Pσ[m,n] ≈σ Pσ[n,m] ) then 
55 begin 
56 for i : = 1 to C 
57 begin 
58 for j : = 1 to C 
59 begin 
60 if ( i ≠ j ) then 
61 begin 
62 forbidden[i,j] : = false 
63 Qσ[i,j] : = Pσ[i,j] 
64 end 
65 end 
66 end 
67 bool1 : = false 
68 while ( bool1 = false ) 
69 begin 
70 for i : = 1 to C 
71 begin 
72 for j : = 1 to C 
73 begin 
74 if ( i ≠ j ) then 
75 begin 
76 if ( Qσ[m,n] ≈σ ij ) then 
77 begin 
78 forbidden[i,j] : = true 
79 end 
80 end 
81 end 
82 end 
83 for i : = 1 to C 
84 begin 
85 for j : = 1 to C 
86 begin 
87 if ( i ≠ j ) then 
88 begin 
89 if ( forbidden[i,j] = true ) then 
90 begin 
91 Qσ[i,j] : = xy 
92 end 
93 else 
94 begin 
95 Qσ[i,j] : = ij 
96 end 
97 end 
98 end 
99 end 
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100 for i : = 1 to C 
101 begin 
102 for j : = 1 to C 
103 begin 
104 if ( i ≠ j ) then 
105 begin 
106 for k : = 1 to C 
107 begin 
108 if ( i ≠ k ) then 
109 begin 
110 if ( j ≠ k ) then 
111 begin 
112 if ( Qσ[j,k] σ minσ { Qσ[j,i], Qσ[i,k] } ) then 
113 begin 
114 Qσ[j,k] : = minσ { Qσ[j,i], Qσ[i,k] } 
115 end 
116 end 
117 end 
118 end 
119 end 
120 end 
121 end 
122 if ( Qσ[m,n] σ Qσ[n,m] ) then 
123 begin 
124 final(σ) : = final(σ) + {mn} 
125 final(σ) : = final(σ) \ {n} 
126 bool1 : = true 
127 
128 

end 
else 

129 if ( Qσ[m,n] σ Qσ[n,m] ) then 
130 begin 
131 final(σ) : = final(σ) + {nm} 
132 final(σ) : = final(σ) \ {m} 
133 bool1 : = true 
134 end 
135 end 
136 end 
137 end 
138 end 

 
For each pair of alternatives m,n ∈ A, we check whether Pσ[m,n] ≈σ 

Pσ[n,m] (lines 50–55). In this case, the link ij with Pσ[m,n] ≈σ ij is declared 
forbidden (lines 70–82) and the strongest paths, that don’t contain forbidden 
links, are calculated (lines 83–121). This procedure is repeated (lines 67–68) 
until this indifference is resolved (lines 122–134). 

 
We define 
 
(5.1.2) final : = ∩ { final(σ) | σ ∈ A×A with (5.1.1) }. 
 
(5.1.3) final : =  { final(σ) | σ ∈ A×A with (5.1.1) }. 
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5.2. Calculating a Tie-Breaking Ranking of the Candidates 
and a Tie-Breaking Ranking of the Links 

 
The Schulze relation , as defined in (2.2.1), is only a strict partial order. 

However, sometimes, a linear order is needed. In this section, we will show 
how the Schulze relation  can be completed to a linear order without 
having to sacrifice any of the desired criteria. 
 
Step 1: 

A Tie-Breaking Ranking of the Links (TBRL), a linear order σ on     
A × A, and a Tie-Breaking Ranking of the Candidates (TBRC), a linear 
order μ on A, are calculated as follows: 

 
a) In the beginning:  
 

• ∀ (i,j),(m,n) ∈ A × A: (N[i,j],N[j,i]) D (N[m,n],N[n,m]) ⇒ ij σ mn. 
 

• ∀ (i,j),(m,n) ∈ A × A: (N[i,j],N[j,i]) ≈D (N[m,n],N[n,m]) ⇒ ij ≈σ mn. 
 

• ∀ i,j ∈ A: i ≈μ j. 
 

b) Pick a random ballot v ∈ V and use its rankings. That means: 
 

• ∀ (i,j),(m,n) ∈ A × A: If ij ≈σ mn and  
 

(5.2.1) ( ( i v j ) ∧ ( m v n ) ) ∨ ( ( i v j ) ∧ ( m v n ) ) 
 
then replace “ ij ≈σ mn ” by “ ij σ mn ”. 
 

• ∀ i,j ∈ A: If i ≈μ j and i v j, then replace “ i ≈μ j ” by “ i μ j ”. 
 

When the bylaws require that the chairperson decides in the case 
of a tie, then, for the calculations of the TBRL and the TBRC, the 
ballot of the chairperson has to be chosen first. 

 
c) Continue picking ballots randomly from those that have not yet 

been picked and use their rankings. 
 
d) If you go through all ballots and there are still alternatives i,j ∈ A 

with i ≈μ j, then proceed as follows: 
 

d1) Pick a random alternative k and complete the TBRC in its 
favor. ( That means: For all alternatives l ∈ A \ {k} with k ≈μ l: 
Replace “ k ≈μ l ” by “ k μ l ”. ) 

 
d2) Continue picking alternatives randomly from those that have 

not yet been picked and complete the TBRC in their favor. 
  



Markus Schulze, “The Schulze Method of Voting” 

 147 

Step 2: 
Suppose there are still (i,j),(m,n) ∈ A × A with ij ≈σ mn, then proceed 
as follows: 
 
Variant 1: When at least one of the following conditions is satisfied, 
then replace “ ij ≈σ mn ” by “ ij σ mn ”: 

 
(5.2.2a) i μ j and n μ m. 
(5.2.3a) i μ j and m μ n and i μ m. 
(5.2.4a) j μ i and n μ m and n μ j. 
(5.2.5a) i ≡ m and n μ j. 
(5.2.6a) j ≡ n and i μ m. 

 
Variant 2: When at least one of the following conditions is satisfied, 
then replace “ ij ≈σ mn ” by “ ij σ mn ”: 
 

(5.2.2b) i μ j and n μ m. 
(5.2.3b) i μ j and m μ n and n μ j. 
(5.2.4b) j μ i and n μ m and i μ m. 
(5.2.5b) i ≡ m and n μ j. 
(5.2.6b) j ≡ n and i μ m. 

 
(5.2.2a) – (5.2.6a) and (5.2.2b) – (5.2.6b) are chosen in such a manner 
that e.g. when the TBRC μ is abcdefgh then links of otherwise 
equivalent strengths are sorted ah, ag, af, ae, ad, ac, ab, bh, bg, bf, be, 
bd, bc, ch, cg, cf, ce, cd, dh, dg, df, de, eh, eg, ef, fh, fg, gh, hg, gf, hf, 
fe, ge, he, ed, fd, gd, hd, dc, ec, fc, gc, hc, cb, db, eb, fb, gb, hb, ba, ca, 
da, ea, fa, ga, ha in variant 1 resp. ah, bh, ch, dh, eh, fh, gh, ag, bg, cg, 
dg, eg, fg, af, bf, cf, df, ef, ae, be, ce, de, ad, bd, cd, ac, bc, ab, ba, cb, 
ca, dc, db, da, ed, ec, eb, ea, fe, fd, fc, fb, fa, gf, ge, gd, gc, gb, ga, hg, 
hf, he, hd, hc, hb, ha in variant 2. 
 

Step 3: 
final(σ) and final(σ) are calculated as defined in section 5.1. The final 
winner is alternative a ∈ A with ba ∉ final(σ) for every b ∈ A \ {a}. 
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5.3. Transitivity 
 

In section 4.1, we have proven that the binary relation , as defined in 
(2.2.1), is transitive. Nevertheless, it isn’t intuitively clear whether also the 
binary relation final(σ), as defined in section 5.1, is transitive. It seems to be 
possible that ties Pσ[x,y] ≈σ Pσ[y,x] are resolved based on different sets of 
non-forbidden links, so that the transitivity of final(σ) doesn’t follow directly 
from the transitivity of . 

 
However, in the following proof, we will see that also the binary relation 

final(σ), as defined in section 5.1, is transitive. We will prove that ties 
Pσ[x,y] ≈σ Pσ[y,x] are either resolved based on the same set of non-forbidden 
links (sections 5.3.1, 5.3.4, and 5.3.5) or  in those cases, where these ties 
happen to be resolved based on different sets of non-forbidden links  they 
cannot violate transitivity (sections 5.3.2 and 5.3.3). 

 
5.3.1. Part 1 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.1.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.1.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.1.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.1.1), we get ab ∈  and, therefore, ab ∈ final(σ). 
 
With (5.3.1.2), we get bc ∈  and, therefore, bc ∈ final(σ). 
 
This situation is not possible because, when no link has been declared 

forbidden, then all paths are calculated based on the same set of non-
forbidden links. But in section 4.1, we have proven that, when all paths are 
calculated based on the same set of links, then the binary relation , as 
defined by Pσ[x,y] σ Pσ[y,x], is transitive. So, with Pσ[a,b] σ Pσ[b,a] and 
Pσ[b,c] σ Pσ[c,b], we immediately get Pσ[a,c] σ Pσ[c,a]. 

 
5.3.2. Part 2 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.2.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.2.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.2.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.2.1), we get ba ∈  and, therefore, ba ∈ final(σ). 
 
With (5.3.2.2), we get bc ∈  and, therefore, bc ∈ final(σ). 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.2.1) – (5.3.2.3). Then the weakest link in the strongest path from 
alternative a to alternative c and the weakest link in the strongest path from 
alternative c to alternative a must be the same link, say de. 
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Therefore, the strongest paths have the following structure: 
 
 

 
 
 
In this case, it can actually happen that the paths are based on different 

sets of non-forbidden links. In example 9 (section 3.9), we have a situation 
with Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] ≈σ Pσ[a,c] and where 
the link de is the weakest link in the strongest path from alternative a to 
alternative c and simultaneously the weakest link in the strongest path from 
alternative c to alternative a. So when we resolve Pσ[c,a] ≈σ Pσ[a,c], the link 
de has to be declared forbidden. The strongest path from alternative a to 
alternative c, that doesn’t contain the link de, is a,(24,21),c. The strongest 
path from alternative c to alternative a, that doesn’t contain the link de,         
is c,(25,20),b,(22,23),e,(30,15),a. So Pσ[c,a] ≈σ Pσ[a,c] is resolved to           
ac ∈ final(σ). 

 
Now the interesting observation is that the link de is also in  the strongest 

path from alternative b to alternative a. And the strongest path b,(22,23),e, 
(30,15),a from alternative b to alternative a, that doesn’t contain the link de, 
is weaker than the strongest path a,(26,19),b from alternative a to alternative 
b, that doesn’t contain the link de. Therefore, if we had to recalculate the 
strengths of the strongest paths from alternative a to alternative b and from 
alternative b to alternative a based on the fact that the link de has been 
declared forbidden { what we don’t have to do, because each of (5.3.2.1) – 
(5.3.2.3) is resolved separately, based on its own set of non-forbidden links }, 
we would get Pσ[a,b] σ Pσ[b,a]. 

 
Furthermore, the link de is in the strongest path from alternative b to 

alternative c. And the strongest path b,(22,23),e,(32,13),c from alternative b 
to alternative c, that doesn’t contain the link de, is weaker than the strongest 
path c,(25,20),b from alternative c to alternative b, that doesn’t contain the 
link de. Therefore, if we had to recalculate the strengths of the strongest 
paths from alternative b to alternative c and from alternative c to alternative 
b based on the fact that the link de has been declared forbidden, we would 
get Pσ[b,c] σ Pσ[c,b]. 

 
So example 9 (section 3.9) demonstrates that it can happen that (5.3.2.1) 

– (5.3.2.3) are resolved based on different sets of non-forbidden links. 
However, this is not a problem because  it doesn’t matter whether Pσ[c,a] 
≈σ Pσ[a,c] is resolved to Pσ[c,a] σ Pσ[a,c] or to Pσ[c,a] σ Pσ[a,c]  
transitivity will never be violated. 

a b c Pσ[b,c] 

Pσ[c,d] 

Pσ[e,c] Pσ[a,d] 

Pσ[e,a] 

(N[d,e],N[e,d])   d   e 

Pσ[b,a] 
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5.3.3. Part 3 
 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.3.1) Pσ[a,b] σ Pσ[b,a]. 
 
(5.3.3.2) Pσ[b,c] σ Pσ[c,b]. 
 
(5.3.3.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 
With (5.3.3.1), we get ab ∈  and, therefore, ab ∈ final(σ). 
 
With (5.3.3.2), we get cb ∈  and, therefore, cb ∈ final(σ). 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.3.1) – (5.3.3.3). Then the weakest link in the strongest path from 
alternative a to alternative c and the weakest link in the strongest path from 
alternative c to alternative a must be the same link, say de. 

 
Therefore, the strongest paths have the following structure: 
 

 
 

In this case, it can actually happen that the paths are based on different 
sets of non-forbidden links. In example 10 (section 3.10), we have a situation 
with Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] ≈σ Pσ[a,c] and where 
the link de is the weakest link in the strongest path from alternative a to 
alternative c and simultaneously the weakest link in the strongest path from 
alternative c to alternative a. So when we resolve Pσ[c,a] ≈σ Pσ[a,c], the link 
de has to be declared forbidden. The strongest path from alternative a to 
alternative c, that doesn’t contain the link de, is a,(24,21),c. The strongest 
path from alternative c to alternative a, that doesn’t contain the link de,         
is c,(30,15),d,(22,23),b,(25,20),a. So Pσ[c,a] ≈σ Pσ[a,c] is resolved to           
ac ∈ final(σ). 

 
Now the interesting observation is that the link de is also in  the strongest 

path from alternative a to alternative b. And the strongest path a,(32,13),d, 
(22,23),b from alternative a to alternative b, that doesn’t contain the link de, 
is weaker than the strongest path b,(25,20),a from alternative b to alternative 
a, that doesn’t contain the link de. Therefore, if we had to recalculate the 
strengths of the strongest paths from alternative a to alternative b and from 
alternative b to alternative a based on the fact that the link de has been 
declared forbidden { what we don’t have to do, because each of (5.3.3.1) – 

a b c Pσ[c,b] 

Pσ[c,d] 

Pσ[e,c] Pσ[a,d] 

Pσ[e,a] 

(N[d,e],N[e,d])   d   e 

Pσ[a,b] 
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(5.3.3.3) is resolved separately, based on its own set of non-forbidden links }, 
we would get Pσ[a,b] σ Pσ[b,a]. 

 
Furthermore, the link de is in the strongest path from alternative c to 

alternative b. And the strongest path c,(30,15),d,(22,23),b from alternative c 
to alternative b, that doesn’t contain the link de, is weaker than the strongest 
path b,(26,19),c from alternative b to alternative c, that doesn’t contain the 
link de. Therefore, if we had to recalculate the strengths of the strongest 
paths from alternative b to alternative c and from alternative c to alternative 
b based on the fact that the link de has been declared forbidden, we would 
get Pσ[b,c] σ Pσ[c,b]. 

 
So example 10 (section 3.10) demonstrates that it can happen that 

(5.3.3.1) – (5.3.3.3) are resolved based on different sets of non-forbidden 
links. However, this is not a problem because  it doesn’t matter whether 
Pσ[c,a] ≈σ Pσ[a,c] is resolved to Pσ[c,a] σ Pσ[a,c] or to Pσ[c,a] σ Pσ[a,c]  
transitivity will never be violated. 

 
5.3.4. Part 4 

 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.4.1) Pσ[a,b] ≈σ Pσ[b,a]. 
 
(5.3.4.2) Pσ[b,c] ≈σ Pσ[c,b]. 
 
(5.3.4.3) Pσ[c,a] σ Pσ[a,c]. 
 
With (5.3.4.3), we get ca ∈  and, therefore, ca ∈ final(σ). 
 
As the tie (5.3.4.1) and the tie (5.3.4.2) are resolved separately, it seems 

to be possible that they are resolved based on different sets of non-forbidden 
links, so that the transitivity of final(σ) doesn’t follow directly from the 
transitivity of . It seems to be possible that the tie (5.3.4.1) is resolved to 
Pσ[a,b] σ Pσ[b,a] and that simultaneously  as other links are declared 
forbidden during the process of resolving the tie (5.3.4.2), so that the 
strengths of the strongest paths are determined based on different sets of 
non-forbidden links  the tie (5.3.4.2) is resolved to Pσ[b,c] σ Pσ[c,b], so 
that the transitivity of final(σ) is violated. However, the following proof 
shows that transitivity will never be violated. 

 
Claim: 

 
Suppose (5.3.4.1) – (5.3.4.3) are resolved as prescribed in section 5.1. 

Then transitivity will never be violated. 
 

Proof: 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.4.1) – (5.3.4.3). Then the weakest link in the strongest path from 
alternative a to alternative b and the weakest link in the strongest path from 
alternative b to alternative a must be the same link, say de. Furthermore, the 
weakest link in the strongest path from alternative b to alternative c and the 
weakest link in the strongest path from alternative c to alternative b must be 
the same link, say fg. 
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Therefore, the strongest paths have the following structure: 
 
 

 
 

 
As de is the weakest link in the strongest path from alternative a to 

alternative b, we get 

(5.3.4.4) Pσ[a,d] σ (N[d,e],N[e,d]). 

(5.3.4.5) Pσ[e,b] σ (N[d,e],N[e,d]). 

As de is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(5.3.4.6) Pσ[b,d] σ (N[d,e],N[e,d]). 

(5.3.4.7) Pσ[e,a] σ (N[d,e],N[e,d]). 

As fg is the weakest link in the strongest path from alternative b to 
alternative c, we get 

(5.3.4.8) Pσ[b,f] σ (N[f,g],N[g,f]). 

(5.3.4.9) Pσ[g,c] σ (N[f,g],N[g,f]). 

As fg is the weakest link in the strongest path from alternative c to 
alternative b, we get 

(5.3.4.10) Pσ[c,f] σ (N[f,g],N[g,f]). 

(5.3.4.11) Pσ[g,b] σ (N[f,g],N[g,f]). 

With (5.3.4.4), (5.3.4.5), (5.3.4.8), and (5.3.4.9), we get: a → d → e → b 
→ f → g → c is a path from alternative a to alternative c with a strength of 
minσ { (N[d,e],N[e,d]), (N[f,g],N[g,f]) }. Therefore, with (5.3.4.3), we get 

(5.3.4.12) Pσ[c,a] σ minσ { (N[d,e],N[e,d]), (N[f,g],N[g,f]) }. 

  

d    

b 

g Pσ[e,a] 

Pσ[b,d] (N[d,e],N[e,d]) 

  f   e 

 c   a 

Pσ[a,d] 

(N[f,g],N[g,f]) 

Pσ[e,b] Pσ[b,f] 

Pσ[c,f] 

Pσ[g,c] 

Pσ[g,b] 

Pσ[c,a] 
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Case 1: Suppose 

(5.3.4.13a) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

Then, with (5.3.4.12), (5.3.4.4), (5.3.4.13a), and (5.3.4.5), we get: c → a 
→ d → e → b is a path from alternative c to alternative b with a strength of 
more than (N[f,g],N[g,f]). But this is a contradiction to the presumption that 
fg is the weakest link in the strongest path from alternative c to alternative b. 

Case 2: Suppose 

(5.3.4.13b) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

Then, with (5.3.4.8), (5.3.4.13b), (5.3.4.9), and (5.3.4.12), we get: b → f 
→ g → c → a is a path from alternative b to alternative a with a strength of 
more than (N[d,e],N[e,d]). But this is a contradiction to the presumption that 
de is the weakest link in the strongest path from alternative b to alternative a. 

As (5.3.4.13a) and (5.3.4.13b) are not possible, we get 

(5.3.4.13c) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]). 

As there are no links of equivalent strengths, (5.3.4.13c) means that de 
and fg are the same link. So to resolve (5.3.4.1) and (5.3.4.2), the same link 
is declared forbidden. 

Therefore, the strongest paths have the following structure: 
 
 

 
  

a b c 

Pσ[a,d] 

Pσ[e,b] Pσ[c,d] 

Pσ[e,c] 

Pσ[e,a] Pσ[b,d] 

(N[d,e],N[e,d])   e   d 

Pσ[c,a] 
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Without loss of generality, we can also say that the same link is declared 
forbidden in the process of resolving (5.3.4.3). The reason: With (5.3.4.12),     
we get that the link de cannot be in the strongest path from alternative c to 
alternative a. Therefore, the strongest path from alternative c to alternative a 
cannot be weakened by declaring the link de forbidden. The strongest path 
from alternative a to alternative c can be weakened by declaring the         
link de forbidden. But as we already know from (5.3.4.3) that the strongest 
path from alternative c to alternative a is stronger than the strongest path 
from alternative a to alternative c, declaring the link de forbidden cannot 
have an impact on the resolution of (5.3.4.3). 

When the link de is declared forbidden, we get one of the following 
cases: 

Case A: We still get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. In this 
case, with the same argumentation as in cases 1–2 we get that the same link, 
say d’e’, is the weakest link in the strongest path from alternative a to 
alternative b, the weakest link in the strongest path from alternative b to 
alternative a, the weakest link in the strongest path from alternative b to 
alternative c, and the weakest link in the strongest path from alternative c to 
alternative b. So we can proceed with declaring the link d’e’ forbidden until 
we get one of the cases B–G. 

Case B: We get ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ) or ( Pσ[a,b] 
σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ) or ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ 
Pσ[c,b] ). In this case, we succeeded in resolving (5.3.4.1) – (5.3.4.3) without 
violating transitivity. 

Case C: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
with Pσ[c,a] σ Pσ[a,c] and Pσ[a,b] σ Pσ[b,a] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[b,c] σ Pσ[c,b]. 

Case D: We get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
with Pσ[c,a] σ Pσ[a,c] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[a,b] σ Pσ[b,a]. 
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Case E: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.4.1) – 
(5.3.4.3) are still calculated based on the same set of non-forbidden links. So 
Pσ[a,b] σ Pσ[b,a], Pσ[b,c] σ Pσ[c,b], and Pσ[c,a] σ Pσ[a,c] together violate 
transitivity, as proven in section 4.1 for cases where all paths are based on 
the same set of non-forbidden links. 

Case F: We get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 
identical to the situation in section 5.3.2. It is possible that Pσ[a,b] ≈σ Pσ[b,a] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,b] ≈σ Pσ[b,a] is 
resolved to Pσ[a,b] σ Pσ[b,a] or to Pσ[a,b] σ Pσ[b,a]  transitivity will 
never be violated. 

 
Case G: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. This case is 

identical to the situation in section 5.3.3. It is possible that Pσ[b,c] ≈σ Pσ[c,b] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[b,c] ≈σ Pσ[c,b] is 
resolved to Pσ[b,c] σ Pσ[c,b] or to Pσ[b,c] σ Pσ[c,b]  transitivity will 
never be violated. 

 
The following table shows that cases A–G cover all possible 

combinations. Therefore, it has been proven for every possible situation that, 
when we resolve (5.3.4.1) – (5.3.4.3) as prescribed in section 5.1, then 
transitivity will never be violated. 

 
Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case A 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case F 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case C 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case E 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case G 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 
           □ 
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5.3.5. Part 5 
 
Suppose, before we start declaring links forbidden, we have: 
 
(5.3.5.1) Pσ[a,b] ≈σ Pσ[b,a]. 
 
(5.3.5.2) Pσ[b,c] ≈σ Pσ[c,b]. 
 
(5.3.5.3) Pσ[c,a] ≈σ Pσ[a,c]. 
 

Claim: 
 
Suppose (5.3.5.1) – (5.3.5.3) are resolved as prescribed in section 5.1. 

Then transitivity will never be violated. 
 

Proof: 
 
Suppose there are no pairwise links of equivalent strengths. Suppose 

(5.3.5.1) – (5.3.5.3). Then the weakest link in the strongest path from 
alternative a to alternative b and the weakest link in the strongest path from 
alternative b to alternative a must be the same link, say de. Furthermore, the 
weakest link in the strongest path from alternative b to alternative c and the 
weakest link in the strongest path from alternative c to alternative b must be 
the same link, say fg. Furthermore, the weakest link in the strongest path 
from alternative c to alternative a and the weakest link in the strongest path 
from alternative a to alternative c must be the same link, say hi. 

 
Therefore, the strongest paths have the following structure: 
 
 
 

 
 

 

d    

b 

g 

Pσ[c,h] 

Pσ[i,c] Pσ[a,h] 

Pσ[i,a] 

(N[h,i],N[i,h])   h   i 

Pσ[e,a] 

Pσ[b,d] (N[d,e],N[e,d]) 

  f   e 

 c   a 

Pσ[a,d] 

(N[f,g],N[g,f]) 

Pσ[e,b] Pσ[b,f] 

Pσ[c,f] 

Pσ[g,c] 

Pσ[g,b] 
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As de is the weakest link in the strongest path from alternative a to 
alternative b, we get 

(5.3.5.4) Pσ[a,d] σ (N[d,e],N[e,d]). 

(5.3.5.5) Pσ[e,b] σ (N[d,e],N[e,d]). 

As de is the weakest link in the strongest path from alternative b to 
alternative a, we get 

(5.3.5.6) Pσ[b,d] σ (N[d,e],N[e,d]). 

(5.3.5.7) Pσ[e,a] σ (N[d,e],N[e,d]). 

As fg is the weakest link in the strongest path from alternative b to 
alternative c, we get 

(5.3.5.8) Pσ[b,f] σ (N[f,g],N[g,f]). 

(5.3.5.9) Pσ[g,c] σ (N[f,g],N[g,f]). 

As fg is the weakest link in the strongest path from alternative c to 
alternative b, we get 

(5.3.5.10) Pσ[c,f] σ (N[f,g],N[g,f]). 

(5.3.5.11) Pσ[g,b] σ (N[f,g],N[g,f]). 

As hi is the weakest link in the strongest path from alternative c to 
alternative a, we get 

(5.3.5.12) Pσ[c,h] σ (N[h,i],N[i,h]). 

(5.3.5.13) Pσ[i,a] σ (N[h,i],N[i,h]). 

As hi is the weakest link in the strongest path from alternative a to 
alternative c, we get 

(5.3.5.14) Pσ[a,h] σ (N[h,i],N[i,h]). 

(5.3.5.15) Pσ[i,c] σ (N[h,i],N[i,h]). 
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Case 1: Suppose 

(5.3.5.16a) (N[d,e],N[e,d]) σ (N[f,g],N[g,f]). 

(5.3.5.17a) (N[d,e],N[e,d]) σ (N[h,i],N[i,h]). 

Then, with (5.3.5.14), (5.3.5.17a), (5.3.5.15), (5.3.5.10), (5.3.5.16a),    
and (5.3.5.11), we get: a → h → i → c → f → g → b is a path from 
alternative a to alternative b with a strength of more than (N[d,e],N[e,d]). 
But this is a contradiction to the presumption that de is the weakest link in 
the strongest path from alternative a to alternative b. 

Similarly, with (5.3.5.8), (5.3.5.16a), (5.3.5.9), (5.3.5.12), (5.3.5.17a), 
and (5.3.5.13), we get: b → f → g → c → h → i → a is a path from 
alternative b to alternative a with a strength of more than (N[d,e],N[e,d]). 
But this is a contradiction to the presumption that de is the weakest link in 
the strongest path from alternative b to alternative a. 

Case 2: Suppose 

(5.3.5.16b) (N[f,g],N[g,f]) σ (N[d,e],N[e,d]). 

(5.3.5.17b) (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

Then, with (5.3.5.6), (5.3.5.16b), (5.3.5.7), (5.3.5.14), (5.3.5.17b),        
and (5.3.5.15), we get: b → d → e → a → h → i → c is a path from 
alternative b to alternative c with a strength of more than (N[f,g],N[g,f]).   
But this is a contradiction to the presumption that fg is the weakest link in   
the strongest path from alternative b to alternative c. 

Similarly, with (5.3.5.12), (5.3.5.17b), (5.3.5.13), (5.3.5.4), (5.3.5.16b), 
and (5.3.5.5), we get: c → h → i → a → d → e → b is a path from 
alternative c to alternative b with a strength of more than (N[f,g],N[g,f]).   
But this is a contradiction to the presumption that fg is the weakest link in 
the strongest path from alternative c to alternative b. 

Case 3: Suppose 

(5.3.5.16c) (N[h,i],N[i,h]) σ (N[d,e],N[e,d]). 

(5.3.5.17c) (N[h,i],N[i,h]) σ (N[f,g],N[g,f]). 

Then, with (5.3.5.10), (5.3.5.17c), (5.3.5.11), (5.3.5.6), (5.3.5.16c),      
and (5.3.5.7), we get: c → f → g → b → d → e → a is a path from   
alternative c to alternative a with a strength of more than (N[h,i],N[i,h]).   
But this is a contradiction to the presumption that hi is the weakest link in 
the strongest path from alternative c to alternative a. 

Similarly, with (5.3.5.4), (5.3.5.16c), (5.3.5.5), (5.3.5.8), (5.3.5.17c),   
and (5.3.5.9), we get: a → d → e → b → f → g → c is a path from 
alternative a to alternative c with a strength of more than (N[h,i],N[i,h]).   
But this is a contradiction to the presumption that hi is the weakest link in 
the strongest path from alternative a to alternative c. 
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With cases 1–3, we get that none of the links de, fg, hi can be weaker 
than the other two links. Without loss of generality, we can presume that the 
link hi is the strongest one of the links de, fg, hi. So we get 

(5.3.5.18) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

We can ignore the case (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) ≈σ (N[h,i], 
N[i,h]) because in this case the links de, fg, hi are the same link so that for 
each of (5.3.5.1) – (5.3.5.3) the same link is declared forbidden first so that, 
afterwards, each of (5.3.5.1) – (5.3.5.3) is still resolved based on the same 
set of non-forbidden links. 

So without loss of generality, we get 

(5.3.5.19) (N[d,e],N[e,d]) ≈σ (N[f,g],N[g,f]) σ (N[h,i],N[i,h]). 

As there are no links of equivalent strengths, (5.3.5.19) means that the 
link de and the link fg must be the same link. Therefore, the strongest paths 
have the following structure: 

 
 
 

 
 

 

Without loss of generality, we can also say that, when we resolve 
(5.3.5.1) – (5.3.5.3), then, at each stage, the weakest of the weakest links of 
the current strongest paths is declared forbidden. So in our situation, the link 
de is declared forbidden next. 

  

a b c 

Pσ[a,d] 

Pσ[e,b] Pσ[c,d] 

Pσ[c,h] 

Pσ[i,c] Pσ[a,h] 

Pσ[i,a] 

(N[h,i],N[i,h])   h   i 

Pσ[e,c] 

Pσ[e,a] Pσ[b,d] 

(N[d,e],N[e,d])   e   d 
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Since (N[d,e],N[e,d]) σ (N[h,i],N[i,h]) ≈σ Pσ[c,a] ≈σ Pσ[a,c], the link de 
cannot be in the strongest path from alternative c to alternative a or in the 
strongest path from alternative a to alternative c. Therefore, declaring the 
link de forbidden cannot have an impact on the strongest path from 
alternative c to alternative a or on the strongest path from alternative a to 
alternative c. 

When the link de is declared forbidden, we get one of the following 
cases: 

Case A: We still get Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b]. In this 
case, with the same argumentation as in cases 1–2 we get that the same link, 
say d’e’, is the weakest link in the strongest path from alternative a to 
alternative b, the weakest link in the strongest path from alternative b to 
alternative a, the weakest link in the strongest path from alternative b to 
alternative c, and the weakest link in the strongest path from alternative c to 
alternative b. So we can proceed with declaring the link d’e’ forbidden until 
we get one of the cases B–F. 

Case B: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.5.1) – 
(5.3.5.3) are still calculated based on the same set of non-forbidden links. 
With Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[c,a] σ Pσ[a,c]. But this is a 
contradiction to the fact that the link de cannot have been in the strongest 
path from alternative c to alternative a or in the strongest path from 
alternative a to alternative c, so that declaring the link de forbidden cannot 
have an impact on Pσ[c,a] ≈σ Pσ[a,c]. 

Case C: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is not 
possible because, after the link de has been declared forbidden, (5.3.5.1) – 
(5.3.5.3) are still calculated based on the same set of non-forbidden links. 
With Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] and the transitivity, as proven 
in section 4.1 for cases where all paths are based on the same set of non-
forbidden links, we would immediately get Pσ[c,a] σ Pσ[a,c]. But this is a 
contradiction to the fact that the link de cannot have been in the strongest 
path from alternative c to alternative a or in the strongest path from 
alternative a to alternative c, so that declaring the link de forbidden cannot 
have an impact on Pσ[c,a] ≈σ Pσ[a,c]. 
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Case D: We get ( Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] ) or ( Pσ[a,b] 
σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] ) or ( Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ 
Pσ[c,b] ) or ( Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] ). This case is not 
possible because we have seen in (5.3.4.13a) – (5.3.4.13c) that, when we 
have a situation with Pσ[x,y] ≈σ Pσ[y,x], Pσ[y,z] ≈σ Pσ[z,y], and Pσ[z,x] σ 
Pσ[x,z], then the weakest link in the strongest path from alternative x to 
alternative y, the weakest link in the strongest path from alternative y to 
alternative x, the weakest link in the strongest path from alternative y to 
alternative z, and the weakest link in the strongest path from alternative z to 
alternative y must be the same link. But this is not possible because 
(5.3.5.19) says that the link hi is stronger than the link de. 

Case E: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 
identical to the situation in section 5.3.2. It is possible that Pσ[c,a] ≈σ Pσ[a,c] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,c] ≈σ Pσ[c,a] is 
resolved to Pσ[a,c] σ Pσ[c,a] or to Pσ[a,c] σ Pσ[c,a]  transitivity will 
never be violated. 

 
Case F: We get Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b]. This case is 

identical to the situation in section 5.3.3. It is possible that Pσ[c,a] ≈σ Pσ[a,c] 
is resolved based on a different set of non-forbidden links. However, this is 
not a problem because  it doesn’t matter whether Pσ[a,c] ≈σ Pσ[c,a] is 
resolved to Pσ[a,c] σ Pσ[c,a] or to Pσ[a,c] σ Pσ[c,a]  transitivity will 
never be violated. 

The following table shows that cases A–F cover all possible 
combinations. Therefore, it has been proven for every possible situation that, 
when we resolve (5.3.5.1) – (5.3.5.3) as prescribed in section 5.1, then 
transitivity will never be violated. 

 
Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case A 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] ≈σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case B 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case F 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] ≈σ Pσ[c,b] → case D 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case E 

Pσ[a,b] σ Pσ[b,a] and Pσ[b,c] σ Pσ[c,b] → case C 
           □ 
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5.4. Analysis 
 

5.4.1. The Probabilistic Framework 
 
An election method is simply a mapping from some input to some output. 

In section 2.1, we presumed that the output is (1) a strict partial order  on A 
and (2) a set ∅ ≠  ⊆ A of potential winners. In the probabilistic framework, 
the output of an election method is a probability distribution [] ∈  on 
A, where A is the set of linear orders on A. 

 
We get 
 
(5.4.1.1) ∀  ∈ A: [] ≥ 0. 
 
(5.4.1.2) ∑ ( [] |  ∈ A ) = 1. 
 
Suppose [a,b] ∈  is the probability for ab ∈  ( i.e. the probability that 

alternative a ∈ A is ranked ahead of alternative b ∈ A \ {a} in the collective 
ranking  ). 

 
Then, we get 
 
(5.4.1.3) [a,b] : = ∑ ( [] |  ∈ A with ab ∈  ). 
 
(5.4.1.4) ∀ a,b ∈ A: [a,b] ≥ 0. 
 
(5.4.1.5) ∀ a,b ∈ A: [a,b] + [b,a] = 1. 
 
Suppose [a] ∈  is the probability that alternative a ∈ A is elected. 
 
Then, we get 
 
(5.4.1.6) [a] : = ∑ ( [] |  ∈ A with ab ∈  for all b ∈ A \ {a} ). 
 
(5.4.1.7) ∀ a ∈ A: [a] ≥ 0. 
 
(5.4.1.8) ∑ ( [a] | a ∈ A ) = 1. 
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5.4.2. Resolvability 

Definition: 

An election method satisfies the resolvability criterion if ( for every given 
number of alternatives ) the proportion of profiles without a unique linear 
order ( i.e. without a linear order  ∈ A with [] = 1 ) tends to zero as 
the number of voters in the profile tends to infinity. 

Claim: 

If D satisfies (2.1.1), then the Schulze method final(σ), as defined in 
sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies the 
resolvability criterion. 

Proof (overview): 

1. Suppose the number of alternatives is fixed. We prove that, when the 
number of voters in the profile tends to infinity, the probability, that 
there are links with equivalent strengths, goes to zero. So the 
probability, that there are links ef and gh with ef ≈σ gh, goes to zero. 

2. We prove that (1) the link ij cannot be in the strongest path from 
alternative j to alternative i and (2) the link ji cannot be in the strongest 
path from alternative i to alternative j. Therefore, when we resolve the 
tie Pσ[i,j] ≈σ Pσ[j,i], it can neither happen that the link ij is declared 
forbidden nor that the link ji is declared forbidden. Therefore, in worst 
case, when there are no other paths of non-forbidden links anymore, 
Pσ[i,j] ≈σ Pσ[j,i] is resolved to ij ∈  when ij σ ji and to ji ∈  when 
ij σ ji. So the algorithm in section 5.1 always terminates before all 
links have been declared forbidden. 

Remark: 

When there is a unique linear order ( i.e. a linear order  ∈ A with 
[] = 1 ) then, with (5.4.1.6), we get that there is also a unique winner ( i.e. 
an alternative a ∈ A with [a] = 1 ): 

( ∃  ∈ A: [] = 1 ) ⇒ ( ∃ a ∈ A: [a] = 1 ). 
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5.4.3. Pareto 

In the probabilistic framework, the Pareto criterion says that, when no 
voter strictly prefers alternative b ∈ A to alternative a ∈ A [see (5.4.3.1)] and 
at least one voter strictly prefers alternative a to alternative b [see (5.4.3.2)], 
then [b] = 0. 

 
Definition: 
 

An election method satisfies the Pareto criterion if the following holds: 
 

Suppose: 
 
(5.4.3.1) ∀ v ∈ V: a v b. 
 
(5.4.3.2) ∃ v ∈ V: a v b. 

 
Then: 

 
(5.4.3.3) [a,b] = 1. 
 
(5.4.3.4) [b] = 0. 
 

Claim: 
 
If D satisfies (2.1.1), then the Schulze method final(σ), as defined in 

sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies the Pareto 
criterion. 

 
Proof (overview): 

 
We prove 

(5.4.3.5) a μ b     with certainty. 

With (4.3.2.8), (5.2.1), (5.2.6a), and (5.2.6b), we prove 

(5.4.3.6) ∀ e ∈ A \ {a,b}: ae σ be    with certainty. 
 
With (4.3.2.9), (5.2.1), (5.2.5a), and (5.2.5b), we prove 

(5.4.3.7) ∀ e ∈ A \ {a,b}: eb σ ea    with certainty. 
 

With (2.1.1), (5.2.1), (5.4.3.1), and (5.4.3.2), we prove 
 
(5.4.3.8) ab σ ba     with certainty. 
 
With (5.4.3.6), (5.4.3.7), and (5.4.3.8), we prove 
 
(5.4.3.9) ab ∈      with certainty. 
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5.4.4. Reversal Symmetry 

In the probabilistic framework, reversal symmetry says that, when v is 
reversed for all v ∈ V, then old[a] + new[a] ≤ 1 for all a ∈ A. Otherwise, if 
old[a] + new[a] was larger than 1 for some alternative a ∈ A, then this would 
mean that, with a probability of at least old[a] + new[a] – 1 > 0, alternative a 
is identified as best alternative and, simultaneously, identified as worst 
alternative. 

 
Suppose reverse ∈ A is the reversal of  ∈ A. 
 
That means: 
 
(5.4.4.1) ∀ a,b ∈ A: ab ∈  ⇔ ba ∈ reverse. 
 

Definition: 
 
An election method satisfies reversal symmetry if the following holds: 

 
Suppose: 
 

(5.4.4.2) ∀ e,f ∈ A ∀ v ∈ V: e  v
old  f ⇔ f  v

new  e. 
 

Then: 
 

(5.4.4.3) ∀  ∈ A: old[] = new[reverse]. 
 
(5.4.4.4) ∀ a,b ∈ A: old[a,b] = new[b,a]. 
 
(5.4.4.5) ∀ a ∈ A: old[a] + new[a] ≤ 1. 
 

Claim: 
 
Suppose D satisfies (2.1.2). Suppose, for every (i,j),(m,n) ∈ A × A, there 

is at least one voter v ∈ V with 
 
(5.4.4.6)  ( ( i v j ) ∧ ( m v n ) ) 

∨ ( ( i v j ) ∧ ( m ≈v n ) ) 
∨ ( ( i ≈v j ) ∧ ( m v n ) ) 
∨ ( ( i v j ) ∧ ( m v n ) ) 
∨ ( ( i v j ) ∧ ( m ≈v n ) ) 
∨ ( ( i ≈v j ) ∧ ( m v n ) ). 

 
Then the Schulze method final(σ), as defined in sections 5.1, with the 

TBRL σ, as defined in section 5.2, satisfies reversal symmetry. 
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Proof (overview): 
 
Suppose, for every (i,j),(m,n) ∈ A × A, there is at least one voter v ∈ V with 

(5.4.4.6). Then it is guaranteed that (5.2.1) resolves every (i,j),(m,n) ∈ A × A 
to ij σ mn or ij σ mn. So the TBRL σ, as determined in step 1 of section 
5.2, is already linear. 

 
Furthermore, (2.1.2) guarantees that, when v is reversed for all v ∈ V, 

also the TBRL σ, as determined in step 1 of section 5.2, is reversed. 
 
So the probability that  is chosen in the original situation is identical to 

the probability that reverse is chosen in the reversed situation. As we have 
presumed in section 2.1 that there are at least 2 alternatives in A, a ∈ A 
cannot be the maximum element of  and simultaneously the maximum 
element of reverse. Therefore, we get (5.4.4.5). 

 
Example 12: 

 
(α) When we apply the proposed method to example 12 (section 3.12), 

we first calculate the TBRL σ. 
 
We have: 
 

(N[b,c],N[c,b]) ≈D (4,1). 
(N[a,b],N[b,a]) ≈D (3,2). 
(N[c,a],N[a,c]) ≈D (3,2). 
(N[a,c],N[c,a]) ≈D (2,3). 
(N[b,a],N[a,b]) ≈D (2,3). 
(N[c,b],N[b,c]) ≈D (1,4). 

 
So we start with bc σ ab ≈σ ca σ ac ≈σ ba σ cb. 
 
Case I: With a probability of 2/5, one of the a v b v c voters is chosen 

first. ab ≈σ ca is then completed to ab σ ca because this voter supports the 
link ab and opposes the link ca. ac ≈σ ba is completed to ac σ ba because 
this voter supports the link ac and opposes the link ba. So the TBRL σ is 
completed to bc σ ab σ ca σ ac σ ba σ cb. 

 
Case II: With a probability of 2/5, one of the b v c v a voters is chosen 

first. ab ≈σ ca is then completed to ca σ ab because this voter supports the 
link ca and opposes the link ab. ac ≈σ ba is completed to ba σ ac because 
this voter supports the link ba and opposes the link ac. So the TBRL σ is 
completed to bc σ ca σ ab σ ba σ ac σ cb. 

 
Case III: With a probability of 1/5, the c v a v b voter is chosen first. 

As this voter supports both links ab and ca, this voter cannot be used to 
complete ab ≈σ ca. As this voter opposes both links ac and ba, this voter 
cannot be used to complete ac ≈σ ba. With a probability of 1/2, one of the     
a v b v c voters is chosen second; the TBRL σ is then completed to bc σ 
ab σ ca σ ac σ ba σ cb as described in Case I. With a probability of 1/2, 
one of the b v c v a voters is chosen second; the TBRL σ is then 
completed to bc σ ca σ ab σ ba σ ac σ cb as described in Case II. 

 
So with a probability of 1/2, the TBRL σ is completed to bc σ ab σ ca 

σ ac σ ba σ cb and, with a probability of 1/2, the TBRL σ is completed 
to bc σ ca σ ab σ ba σ ac σ cb. 
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(β) When the TBRL bc σ ab σ ca σ ac σ ba σ cb is used. The 
weakest link in the strongest path from alternative a to alternative b is ab. 
The weakest link in the strongest path from alternative b to alternative a is 
ca. As ab σ ca, we get PD[a,b] D PD[b,a]. Alternative a is the final winner. 

 
When the TBRL bc σ ca σ ab σ ba σ ac σ cb is used. The weakest 

link in the strongest path from alternative a to alternative b is ab. The 
weakest link in the strongest path from alternative b to alternative a is ca. As 
ca σ ab, we get PD[b,a] D PD[a,b]. Alternative b is the final winner. 

 
So in example 12, we get: old[a] = 0.5 and old[b] = 0.5. 
 
(γ) When the individual ballots are reversed, we get: 
 

Example 12 (new): 
 

2  voters c v b v a 
2  voters a v c v b 
1  voter b v a v c 

 
When we rename the alternatives b and c and reorder the voters, we see 

that example 12 (new) is identical to example 12. So with anonymity and 
neutrality, we get new[a] = old[a], new[b] = old[c], and new[c] = old[b]. So we 
get: new[a] = 0.5 and new[c] = 0.5. 

 
(δ) The interesting conclusion is that anonymity, neutrality, and reversal 

symmetry together imply old[a] ≤ 0.5 in example 12, because anonymity and 
neutrality together imply new[a] = old[a] and reversal symmetry implies 
old[a] + new[a] ≤ 1. 
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5.4.5. Monotonicity 

In the probabilistic framework, monotonicity says that, when some voters 
rank alternative a ∈ A higher [see (4.5.1) and (4.5.2)] without changing the 
order in which they rank the other alternatives relatively to each other [see 
(4.5.3)], then [a] must not decrease. 

 
Definition: 
 

An election method satisfies monotonicity if the following holds: 
 

Suppose a ∈ A. Suppose the ballots are modified as described in 
(4.5.1) – (4.5.3). Then 
 

(5.4.5.1) ∀ ∅ ≠ B ⊆ A \ {a}: 
 
 ∑ ( old[] |  ∈ A with ab ∈  for all b ∈ B ) 
 
 ≤ ∑ ( new[] |  ∈ A with ab ∈  for all b ∈ B ). 
 
(5.4.5.2) ∀ b ∈ A \ {a}: old[a,b] ≤ new[a,b]. 
 
(5.4.5.3) old[a] ≤ new[a]. 

 
Claim: 

 
If D satisfies (2.1.1), then the Schulze method final(σ), as defined         

in sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies 
monotonicity. 

 
Proof (overview): 

 
We prove, that when the ballots are modified as described in (4.5.1) – 

(4.5.3), then links af with f ∈ A \ {a} can only rise in the TBRL σ compared 
to other links eg with e ∈ A \ {a} and g ∈ A \ {e}. Links fa with f ∈ A \ {a} 
can only fall in the TBRL σ compared to other links eg with g ∈ A \ {a} and 
e ∈ A \ {g}. Links eg with e ∈ A \ {a} and g ∈ A \ {a,e} neither rise nor fall 
in the TBRL σ compared to other links ij with i ∈ A \ {a} and j ∈ A \ {a,i}. 

 
The rest of the proof is identical to the proof in section 4.5. 
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5.4.6. Independence of Clones 

Definition: 
 

An election method is independent of clones if the following holds: 
 
Suppose d ∈ Aold. Suppose Anew : = ( Aold ∪ K ) \ {d}. 
 
Suppose alternative d is replaced by the set of alternatives K in 
such a manner that (4.6.1) – (4.6.3) are satisfied. 
 
Then: 
 
(5.4.6.1) ∀ 1 ∈ (Aold \ {d}) ∀ B ⊆ Aold \ {d} ∀ g ∈ K: 
 
 old[] for  ∈ Aold with 

(1) 1 ⊂  and 
(2) ad ∈  for all a ∈ B and 
(3) db ∈  for all b ∉ B 

 
 = ∑ ( new[] |  ∈ Anew with 

(1) 1 ⊂  and 
(2) ag ∈  for all a ∈ B and 
(3) gb ∈  for all b ∉ B ). 

 
(5.4.6.2) ∀ a,b ∈ Aold \ {d}: old[a,b] = new[a,b]. 
 
(5.4.6.3) ∀ a ∈ Aold \ {d} ∀ g ∈ K: old[a,d] = new[a,g]. 

 
(5.4.6.4) ∀ a ∈ Aold \ {d}: 
 ( ( ( old[a] = 0 ) ∨ ( ∃ v ∈ V: a  v

old  d ) ) ⇒ ( old[a] = new[a] ) ). 
 

Remark: 

The presumption ( ( old[a] = 0 ) ∨ ( ∃ v ∈ V: a  v
old  d ) ) is needed to 

exclude situations where alternative a is chosen with positive probability        
( i.e.: old[a] > 0 ) and every voter is indifferent between alternative a and 
alternative d ( i.e.: a ≈ v

old  d for every v ∈ V ). In those situations, alternative a 
and alternative d are necessarily chosen with the same probability                   
( i.e.: old[a] = old[d] ). When alternative d is replaced by a set K of more than 
one alternative in such a manner that (4.6.1) – (4.6.3) are satisfied then, again, 
every alternative in ( K ∪ {a} ) is necessarily chosen with the same 
probability ( i.e.: new[a] = new[g] for every g ∈ K ), so that the probability, 
that alternative a is chosen, necessarily drops ( i.e.: old[a] > new[a] ). 

Claim: 

The Schulze method final(σ), as defined in sections 5.1, with the TBRL 
σ, as defined in section 5.2, is independent of clones. 
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Proof (overview): 
 
We prove that all the alternatives g ∈ K are ranked in a consecutive 

manner in the TBRC μ. We then prove that, for every a ∈ Aold \ {d},  
all the links ag with g ∈ K are ranked in a consecutive manner in the  
TBRL σ. We further prove that, for every a ∈ Aold \ {d}, all the links ga 
with g ∈ K are ranked in a consecutive manner in the TBRL σ. 

The rest of the proof is identical to the proof in section 4.6. 
 

5.4.7. Smith 

Definition: 

An election method satisfies Smith if the following holds: 
 
Suppose (4.7.1) and (4.7.2). 
 
Then we get: 
 
(5.4.7.1) ∀ a ∈ B1 ∀ b ∈ B2: [a,b] = 1. 
 
(5.4.7.2) ∑ ( [a] | a ∈ B1 ) = 1. 

 
An election method satisfies Smith-IIA if the following holds: 

 
Suppose (4.7.1) and (4.7.2). 
 
Suppose d ∈ B2 is removed. Then we get: 
 
(5.4.7.3) ∀ 1 ∈ B1

: 
 ∑ ( old[] |  ∈ A with 1 ⊂  ) = 

∑ ( new[] |  ∈ (A \ {d}) with 1 ⊂  ). 
 
(5.4.7.4) ∀ a,b ∈ B1: old[a,b] = new[a,b]. 
 
(5.4.7.5)  ∀ a ∈ B1: old[a] = new[a]. 
 
Suppose d ∈ B1 is removed. Then we get: 
 
(5.4.7.6) ∀ 1 ∈ B2

: 
 ∑ ( old[] |  ∈ A with 1 ⊂  ) = 

∑ ( new[] |  ∈ (A \ {d}) with 1 ⊂  ). 
 
(5.4.7.7) ∀ a,b ∈ B2: old[a,b] = new[a,b]. 
 

Claim: 

If D satisfies (2.1.5), then the Schulze method final(σ), as defined in 
sections 5.1, with the TBRL σ, as defined in section 5.2, satisfies Smith and 
Smith-IIA. 

Proof (overview): 
 
The proof is identical to the proofs in section 4.7. 
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5.4.8. Runtime 

The runtime to calculate the pairwise matrix is O(N∙(C^2)). 
 
The runtime to calculate the TBRL is O(N∙(C^4)) because, in worst case, 

O(N) ballots have to be picked and, each time, O(C^2) links are compared 
with O(C^2) other links, according to (5.2.1). 

On closer examination, to sort the O(C^2) links according to their 
strengths, it is not necessary to compare each of the O(C^2) links with each 
other of the O(C^2) links directly. As the fastest algorithms to sort X items 
according to their strengths have a runtime of O(X∙log(X)), the runtime of  
the fastest algorithms to sort the O(C^2) links according to their strengths is 
O((C^2)∙log(C)). 

Therefore, the runtime to calculate the TBRL, as defined in (5.2.1), 
reduces to O(N∙(C^2)∙log(C)). 

 
The runtime to calculate a complete ranking, as defined in section 5.1, is 

O(C^7) because, in worst case, there are O(C^2) pairwise ties “Pσ[m,n] ≈σ 
Pσ[n,m]” (line 54). In worst case, O(C^2) links have to be declared forbidden 
to resolve a pairwise tie. Each time, the runtime of the Floyd-Warshall 
algorithm to calculate the strength of the strongest path from every 
alternative to every other alternative is O(C^3). 

On closer examination, to resolve the pairwise tie “Pσ[m,n] ≈σ Pσ[n,m]”, it 
is not necessary to calculate the strength of the strongest path from every 
alternative to every other alternative. It is sufficient to calculate the strength 
of the strongest path from alternative m to alternative n and the strength of 
the strongest path from alternative n to alternative m. This can be done with 
the Dijkstra algorithm in a runtime O(C^2). 

Therefore, the runtime to calculate a complete ranking, as defined in 
section 5.1, reduces to O(C^6). 

 
Thus, the total runtime to calculate the binary relation , as defined in 

section 5, is O((N∙(C^2)∙log(C)) + (C^6)). 
 

6. Definition of the Strength of a Pairwise Link 
 
6.1. Winning Votes 

 
There has been some debate about how to define D when it is presumed 

that on the one side each voter has a sincere linear order of the alternatives, 
but on the other side some voters cast only a strict weak order because of 
strategic considerations. We got to the conclusion that the strength (N[e,f], 
N[f,e]) of the pairwise link ef ∈ A × A should be measured by winning votes, 
i.e. primarily by the support N[e,f] of this link and secondarily by the 
opposition N[f,e] to this link. 

 
(N[e,f],N[f,e]) win (N[g,h],N[h,g]) if and only if at 
least one of the following conditions is satisfied: 
 

1. N[e,f] > N[f,e] and N[g,h] ≤ N[h,g]. 
2. N[e,f] ≥ N[f,e] and N[g,h] < N[h,g]. 
3. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] > N[g,h]. 
4. N[e,f] > N[f,e] and N[g,h] > N[h,g] and N[e,f] = N[g,h] and N[f,e] < N[h,g]. 
5. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] < N[h,g]. 
6. N[e,f] < N[f,e] and N[g,h] < N[h,g] and N[f,e] = N[h,g] and N[e,f] > N[g,h]. 
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Suppose a,b ∈ A. Suppose R1[a] : = ║{ v ∈ V | ∀ c ∈ A \ {a}: a v c }║ 
is the number of voters who strictly prefer alternative a to every other 
alternative. Suppose R2[b] : = ║{ v ∈ V | ∃ c ∈ A \ {b}: b v c }║ is the 
number of voters who strictly prefer alternative b to at least one other 
alternative. Suppose R1[a] > R2[b]. Then Woodall’s plurality criterion says: 
b ∉ . Woodall (1997) writes: “If some candidate b has strictly fewer votes 
in total than some other candidate a has first-preference votes, then 
candidate b should not be elected.” 
 
Claim: 

 
If win is being used, then the Schulze method satisfies Woodall’s 

plurality criterion. 
 
Proof: 

 
Suppose 
 
(6.1.1) R1[a] > R2[b]. 
 
With (6.1.1) and the definition for win, we get 
 
(6.1.2) (R1[a],R2[b]) win (R2[b],0). 
 
With the definitions for R1[a] and R2[b], we get 
 
(6.1.3) N[a,b] ≥ R1[a]. 
 
(6.1.4) N[b,a] ≤ R2[b]. 
 
With (6.1.3), (6.1.4), and the definition for win, we get 
 
(6.1.5) (N[a,b],N[b,a]) win (R1[a],R2[b]). 
 
With the definition for R2[b], we get 
 
(6.1.6) ∀ c ∈ A \ {b}: N[b,c] ≤ R2[b]. 
 
With (6.1.6) and the definition for win, we get 
 
(6.1.7) ∀ c ∈ A \ {b}: (N[b,c],N[c,b]) win (R2[b],0). 
 
With (2.2.6) and (6.1.7), we get 
 
(6.1.8) Pwin[b,a] win (R2[b],0). 

 
With (2.2.3), (6.1.5), (6.1.2), and (6.1.8), we get 
 
(6.1.9) Pwin[a,b] win (N[a,b],N[b,a]) win (R1[a],R2[b]) 

win (R2[b],0) win Pwin[b,a] 
 
so that ab ∈ .         □ 
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6.2. Margins 
 
Reversal independence says that adding a ballot and its reverse should 

not change the result of the elections. In other words, a ballot and its reverse 
should always cancel each other out. 

 
Definition: 

 
Suppose w1 and w2 are strict weak orders with 
 
(6.2.1)  ∀ a,b ∈ A: a w1

 b ⇔ b w2
 a. 

 
Suppose Vnew : = Vold + {w1} + {w2}. 
 
Then, an election method satisfies reversal independence if the 
following holds: 
 
(6.2.2)  new = old. 
 
(6.2.3)  new = old. 
 

Claim: 
 
If margin is being used, then the Schulze method, as defined in section 

2.2, satisfies reversal independence. 
 

Proof: 
 
The proof is trivial. When w1 and w2 are added, then Nnew[a,b] – Nnew[b,a] 

= Nold[a,b] – Nold[b,a] for all a,b ∈ A. Therefore 
 
(6.2.4) ∀ (e,f),(g,h) ∈ A × A: 
 

( ( Nnew[e,f] – Nnew[f,e] > Nnew[g,h] – Nnew[h,g] ) 
 

⇔ ( Nold[e,f] – Nold[f,e] > Nold[g,h] – Nold[h,g] ) ). 
Therefore 
 
(6.2.5) ∀ (e,f),(g,h) ∈ A × A: 
 

(Nnew[e,f],Nnew[f,e]) margin (Nnew[g,h],Nnew[h,g]) 
 

⇔ (Nold[e,f],Nold[f,e]) margin (Nold[g,h],Nold[h,g]). 
 
With (2.2.2) and (6.2.5), we get (6.2.2) and (6.2.3).     □ 
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7. Supermajority Requirements 
 
When preferential ballots are being used in referendums, then sometimes 

alternatives have to fulfill some supermajority requirements to qualify. 
Typical supermajority requirements define some M1 ∈  or some 1 ≤ M2 ∈  
and say that N[a,b] must be strictly larger than max { N[b,a], M1 } or that 
N[a,b] must be strictly larger than M2∙N[b,a] to replace alternative b ∈ A by 
alternative a ∈ A. Or they say that N[a,b] must be strictly larger than N[b,a] 
not only in the electorate as a whole, but also in a majority of its geographic 
parts or even in each of its geographic parts. It is also possible that in the 
same referendum the voters have to choose between alternatives that have to 
fulfill different supermajority requirements to qualify. In this section, we 
discuss a possible way to combine the Schulze method with supermajority 
requirements. Suppose s ∈ A is the status quo. 

 
These are the two tasks of supermajority requirements: 
 

Task #1 (protecting the status quo): 
 

Supermajority requirements protect the status quo from 
accidental majorities. They make it more difficult to replace the 
status quo s by alternative a ∈ A \ {s}. Therefore, an important 
property of all supermajority requirements is that, when s had 
won in the absence of these requirements, then it also wins in 
the presence of these requirements. 

 
Task #2 (preventing the status quo from cycling): 
 

Supermajority requirements prevent the status quo from 
cycling. Suppose s(0) is the starting status quo. Suppose s(k+1) 
is the new status quo when the method is applied to the same set 
of alternatives A, to the same set of ballots V, and to the status 
quo s(k). Then we would expect that ( for every possible set of 
alternatives A, for every possible set of ballots V, and for every 
possible starting status quo s(0) ∈ A ) there is an m < C such 
that s(k) ≡ s(m) for all k ≥ m. 
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We recommend the following method: 

The Schulze relation , as defined in section 2.2, is calculated. 
 
A Tie-Breaking Ranking of the Links (TBRL), a linear order σ 
on A × A, and a Tie-Breaking Ranking of the Candidates 
(TBRC), a linear order μ on A, are calculated as described in 
section 5.2 variant 1. 
 
The final Schulze relation final(σ), as defined in section 5.1, is 
calculated. 
 
Alternative a ∈ A \ {s} is attainable if and only if N[a,s] > N[s,a] 
and (a) there is no supermajority requirement to replace the status 
quo s by alternative a or (b) alternative a has the supermajority 
required to replace the status quo s by alternative a. 
 
Alternative a ∈ A is eligible if and only if ( a ≡ s ) or ( ( a is 
attainable ) and ( as ∈  ) ). 
 
A winner is an alternative a ∈ A with (1) alternative a is eligible 
and (2) ab ∈ final(σ) for every other eligible alternative b. 

 
The condition “as ∈ ” in the definition of eligibility implies that 

alternative a can win only if it had disqualified the status quo s in the 
absence of supermajority requirements. This guarantees that, if s had won in 
the absence of supermajority requirements, then s also wins in the presence 
of these supermajority requirements. 

 
In the above suggestion, the status quo s can only be replaced by an 

alternative a with as ∈ . As  is transitive, it is guaranteed that the status 
quo cannot be changed in a cyclic manner. 
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8. Electoral College 

There has been some debate about how to combine the Schulze method 
with the Electoral College for the elections of the President of the USA. In 
my opinion, the Electoral College serves two important purposes: 

Purpose #1: The Electoral College gives more power to the smaller 
states. 

The Senate, where each state has the same voting power 
regardless of its population, is more powerful than the House of 
Representatives, where each state has a voting power in 
proportion of its population. This is true especially for decisions 
that are close to the executive. For example, the President needs 
the consent of the Senate for treaties and for the appointment of 
officers and judges. Because of this reason, it is more important 
that the President has a reliable support in the Senate than that 
he has a reliable support in the House of Representatives. 

Purpose #2: The Electoral College makes it possible to count the 
ballots on the state levels and then to add up the electoral votes. 

The Electoral College makes it possible that, to guarantee 
that all voters are treated in an equal manner, it is only 
necessary to guarantee that all voters in the same state are 
treated in an equal manner. However, if the ballots were added 
up on the national level, it would be necessary to guarantee that 
all voters all over the USA are treated in an equal manner. In the 
latter case, many provisions (e.g. the rules to gain suffrage or   
to be excluded from suffrage, the ballot access rules, the rules 
for postal voting, the opening hours of the polling places) would 
have to be harmonized all over the USA, leading to a very 
powerful central election authority. 

This property is desirable especially for the elections to the 
National Conventions for the nominations of the presidential 
candidates. Here, the election rules and the set of candidates 
differ significantly from state to state. 

To combine the Schulze method with the Electoral College without 
losing any of its purposes, we recommend that, for each pair of candidates a 
and b separately, we should determine, how many electoral votes Nelectors[a,b] 
candidate a would get and how many electoral votes Nelectors[b,a] candidate b 
would get when only these two candidates were running. We then apply the 
Schulze method to the matrix Nelectors. 
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So we recommend the following method: 

Stage 1: 
Suppose A is the set of candidates who are running in at least one state. 

Suppose AX ⊆ A is the set of candidates who are running in state X. 

For a,b ∈ AX: NX[a,b] ∈ 0 is the number of voters in state X who 
strictly prefer candidate a to candidate b. 

Stage 2: 
Suppose y ∈  with y > 0. Then “smaller_or_equal(y)” is the     
largest integer that is smaller than or equal to y. In other words: 
“smaller_or_equal(y)” is that integer z ∈ 0 with z ≤ y < ( z + 1 ). 

Suppose y ∈  with y > 0. Then “strictly_smaller(y)” is the        
largest integer that is strictly smaller than y. In other words: 
“strictly_smaller(y)” is that integer z ∈ 0 with z < y ≤ ( z + 1 ). 

Suppose EX ∈  is the number of electors of state X. 

Suppose: 

(a) FX[a,b] : = EX,                                                                                   

if { a ∈ AX and b ∉ AX } or { a,b ∈ AX and NX[a,b] > NX[b,a] = 0 }. 

(b) FX[a,b] : = 0,                                                                                     

if { a ∉ AX and b ∈ AX } or { a,b ∈ AX and NX[b,a] > NX[a,b] = 0 }. 

(c) FX[a,b] : = EX / 2,                                                                               

if { a,b ∉ AX } or { a,b ∈ AX and NX[a,b] = NX[b,a] }. 

(d) FX[a,b] : = 0.01 · smaller_or_equal (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅

),        

if a,b ∈ AX and NX[a,b] > NX[b,a] > 0. 

(e) FX[a,b] : = 0.01 · strictly_smaller (
],[],[

)1001(],[
ab

b
bNaN

EaN
XX

XX

+
⋅+⋅

),          

if a,b ∈ AX and NX[b,a] > NX[a,b] > 0. 

Nelectors[a,b] : = ∑X FX[a,b]. 

Stage 3: 
The Schulze method, as defined in section 2.2, is applied to Nelectors. 

Suppose the Schulze method is used for presidential primaries. Suppose 
some candidate g withdraws and doesn’t take part in the remaining primaries. 
Then candidate g is not removed from the pairwise matrix. Rather he is 
treated as described at stage 2 (a) – (c). This regulation is necessary because 
removing a loser can still change the winner. 



Markus Schulze, “The Schulze Method of Voting” 

 178 

9. Proportional Representation by the Single Transferable Vote 
 
The term “Proportional Representation by the Single Transferable Vote” 

(STV) refers to preferential multi-winner election methods where the 
winning alternatives represent the electorate in a proportional manner. What 
exactly “in a proportional manner” means in this context is debatable and 
will be discussed in section 9.4. 

A is a finite and non-empty set of alternatives. M ∈  with 0 < M < ∞ is 
the number of seats. C ∈  with M < C < ∞ is the number of alternatives.    
N ∈  with 0 < N < ∞ is the number of voters. 

 
AM is the set of the (C!)/((M!)·((C–M)!)) possible ways to choose            

M different alternatives from the set A. The elements of AM are indicated 
with wedding letters A, B, C, ... 

 
Input of an STV method is a profile, as defined in section 2.1. Output of 

an STV method is a subset ∅ ≠ M ⊆ AM of potential winning sets. 
 

9.1. Schulze STV 
 
In Schulze STV, we only compare every set of M alternatives with every 

other set of M alternatives that differs in exactly one alternative. 
 
There are (C!)/((M!)∙(C–M)!) sets of exactly M alternatives. 
 
There are (C!)/(((M+1)!)∙((C–M–1)!)) possible (M+1)-way contests. Each 

(M+1)-way contest leads to M∙(M–1) links in that digraph where each node 
represents a set of M alternatives. See e.g. page 245. 

 
So we have a digraph with (C!)/((M!)∙(C–M)!) nodes and M∙(M–1)∙(C!)/ 

(((M+1)!)∙((C–M–1)!)) links. This digraph is strongly connected. (A digraph 
is strongly connected : ⇔ For every pair of two different nodes A and B, 
there is a directed path from node A to node B and a directed path from  
node B to node A.) We then apply the Schulze method, as defined in section    
2.2, to this digraph. This works because, for the proof in section 4.1, it is 
sufficient that the digraph, that the Schulze method is applied to, is strongly 
connected. It is not necessary that this digraph is complete. 

 
Schulze STV is motivated by the fact that we want a generalization of the 

Condorcet criterion from single-winner elections to multi-winner elections 
that is as strong as possible (section 9.3), so that the possibility, that an 
additional alternative changes the result of the election without being elected, 
is minimized. In section 10.3, we will see that the Condorcet criterion, that 
we get by this manner, is so strong that we almost always have M Condorcet 
winners or, at least, (M–1) Condorcet winners. 
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9.1.1. Proportional Completion 
 
Proportional completion means that non-linear individual orders are 

completed to linear orders in such a manner that, for each set of alternatives, 
the proportions of the individual orders, restricted to these alternatives, are 
not changed. 

 
Example: Suppose a voter is indifferent between alternative a and 

alternative b. Suppose of the other voters X1 = 56 strictly prefer alternative a 
to alternative b and X2 = 44 strictly prefer alternative b to alternative a, then 
this voter is replaced by X1/(X1+X2) = 0.56 voters who rank these alternatives 
a v b and by X2/(X1+X2) = 0.44 voters who rank these alternatives b v a 
and who rank the other alternatives in the same manner as the original voter 
did. 

 
Basic idea behind proportional completion is that, on the one side, adding 

a voter who is indifferent between all alternatives, that have chances to win, 
should not change the result of the election as this additional voter doesn’t 
add new information. On the other side, the definition for the strengths of the 
links between sets of alternatives (section 9.1.2) requires that each voter 
casts a linear order. 

 
The following 3 stages give a precise definition for proportional 

completion. 
 
Stage 1: 

 
W shall be the proportional completion of V. ρ(w) ∈  shall be the 
weight of voter w ∈ W. Then we start with 
 

(9.1.1.1) W : = V. 

(9.1.1.2) ∀ w ∈ W: ρ(w) : = 1. 
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Stage 2: 
 
Suppose there is a voter w ∈ W and a set of alternatives f1,...,fn ∈ A with 
 

(9.1.1.3) n > 1. 

(9.1.1.4) ∀ fi,fj ∈ {f1,...,fn}: fi ≈w fj. 

(9.1.1.5) ∀ fi ∈ {f1,...,fn} ∀ e ∈ A \ {f1,...,fn}: fi w e. 
 
Suppose X ∈ 0 is the number of voters v ∈ V with 
 

(9.1.1.6) ∃ fi,fj ∈ {f1,...,fn}: fi v fj. 
 
Case 1: X > 0. 

 
For each voter v ∈ V with (9.1.1.6), a voter u is added to W with 

 
(9.1.1.7) ∀ g,h ∈ A \ {f1,...,fn}: g w h ⇔ g u h. 

(9.1.1.8) ∀ fi ∈ {f1,...,fn} ∀ g ∈ A \ {f1,...,fn}: g w fi ⇔ g u fi. 

(9.1.1.9) ∀ fi ∈ {f1,...,fn} ∀ h ∈ A \ {f1,...,fn}: fi w h ⇔ fi u h. 

(9.1.1.10) ∀ fi,fj ∈ {f1,...,fn}: fi v fj ⇔ fi u fj. 

(9.1.1.11) ρ(u) : = ρ(w) / X. 
 
Case 2: X = 0. 
 

For each of the n! possible permutations {σ(1),...,σ(n)} of 
{1,...,n}, a voter u is added to W with (9.1.1.7) – (9.1.1.9) and 

 
(9.1.1.12) ∀ fi,fj ∈ {f1,...,fn}: σ(i) > σ(j) ⇔ fi u fj. 

(9.1.1.13) ρ(u) : = ρ(w) / (n!). 
 
After all these voters u have been added to W, the original voter w is 
removed from W. 
 

Stage 3: 
 

Stage 2 is repeated until a w b ∀ a ∈ A ∀ b ∈ A \ {a} ∀ w ∈ W. 
 
So in each iteration of proportional completion, we look whether there is 

still a voter who casts a non-linear order. When there is still such a voter, then 
we take a voter w ∈ W and a set of alternatives ∅ ≠ {f1,...,fn} ⊆ A ( with n > 1 ) 
where voter w is indifferent between all the alternatives in {f1,...,fn} [ see 
(9.1.1.4) ] and different between any alternative in {f1,...,fn} and any alternative 
in A \ {f1,...,fn} [ see (9.1.1.5) ]. We then look how those voters, who are not 
indifferent between all the alternatives in {f1,...,fn} [ see (9.1.1.6) ], rank the 
alternatives in {f1,...,fn}. Voter w is then replaced, in a proportional manner        
[ see (9.1.1.11) ], by voters who rank the alternatives in A \ {f1,...,fn} in the same 
order as voter w did [ see (9.1.1.7) – (9.1.1.9) ] and who rank the alternatives in 
{f1,...,fn} in the same order as the other voters do [ see (9.1.1.10) ]. 
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9.1.2. Links between Sets of Winners 
 
Basic idea for the definition of the strength of some set of M alternatives 

{a1,...,aM} ⊂ A against some alternative b ∈ A \ {a1,...,aM} is that a defeat of 
alternative a against alternative b of strength N[a,b] is single-winner 
elections corresponds to a situation in M-seat elections where each of the 
alternatives {a1,...,aM} has a “separate quota” against alternative b of 
strength N[{a1,...,aM};b]. See (9.1.2.5) – (9.1.2.6). 

W is the proportional completion of V. ρ(w) ∈  is the weight of voter   
w ∈ W. NW is the number of voters in W. 

Suppose {a1,...,aM} ⊂ A and {a1,...,a(M–1),b} ⊂ A are two sets of alternatives 
that differ in exactly one alternative. Then the strength N[{a1,...,aM};b] ∈  of 
the link from {a1,...,aM} to {a1,...,a(M–1),b} is defined as follows: 

N[{a1,...,aM};b] ∈  is the largest value such that there is a t ∈ (NW×M) 
such that 

(9.1.2.1) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: tij ≥ 0. 

(9.1.2.2) ∀ i ∈ {1,...,NW}: ∑
=

M

j
ijt

1

≤ ρ(i). 

(9.1.2.3) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: b i aj ⇒ tij = 0. 

(9.1.2.4) ∀ j ∈ {1,...,M}: ∑
=

WN

i
ijt

1

≥ N[{a1,...,aM};b]. 

 

So the strength N[{a1,...,aM};b] of the link from set {a1,...,aM} to set 
{a1,...,a(M–1),b} is the largest number such that the electorate can be divided 
into M+1 disjoint sets T1,...,T(M+1) such that: 

(9.1.2.5) ∀ j ∈ {1,...,M}: Every voter in Tj prefers alternative aj 
to alternative b. 

 
(9.1.2.6) ∀ j ∈ {1,...,M}: The total weight of the voters in Tj is at 

least N[{a1,...,aM};b]. 
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Basic idea behind this definition for the strength of a link is the following: 
 

In multi-winner elections, it is a useful strategy for a voter not to 
give a needlessly good preference to an alternative that wins with 
certainty even without this voter’s vote. By using this strategy, this 
voter doesn’t waste his vote (to alternatives that win with certainty 
even without this voter’s vote) so that his vote has more impact on 
which of those alternatives, that are less certain of getting elected, 
actually get elected. This strategy is called “free riding” (Schulze, 
2004). 

 
When the voters have understood this strategic loophole well, then 

the order, in which the individual voter ranks the strong alternatives 
relatively to each other, doesn’t say anything anymore about the 
sincere opinion of this voter about these alternatives, it only says 
something about how strong this voter believes these alternatives are 
relatively to each other. So the order, in which the individual voter 
ranks the strong alternatives relatively to each other, doesn’t contain 
any information and should, therefore, have no impact on the result of 
the election. 

 
In the above definition for the strength N[{a1,...,aM};b] of the link 

from set {a1,...,aM} to set {a1,...,a(M–1),b}, this strength does not depend 
on the order in which the individual voter ranks the alternatives 
{a1,...,aM} relatively to each other, it only depends on which 
alternatives of {a1,...,aM} are preferred to alternative b [ see (9.1.2.5) 
and (9.1.2.6) ]. As, in Schulze STV, the strengths of links against 
strong alternatives have no impact on the result of the election [ see 
section 9.3 ], the above definition for the strengths of links guarantees 
that Schulze STV is invulnerable to free riding. 
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9.1.3. Definition of Schulze STV 
 

Suppose D1 and D2 are two binary relations that each satisfy (2.1.1) – 
(2.1.3). 

 

Stage 1: 
 
We calculate the Schulze single-winner ranking 1 on A, as defined in 
section 5, with D1. 
 

Stage 2: 

Proportional completion is used to complete V to W. 
 

Stage 3: 
 
A path from set X ∈ AM to set Y ∈ AM \ {X} is a sequence of sets 
C(1),...,C(n) ∈ AM with the following properties: 

 1. X ≡ C(1). 
 2. Y ≡ C(n). 
  3. 2 ≤ n < ∞. 

4. For all i = 1,...,(n–1): C(i) and C(i+1) differ in exactly one 
alternative. That means: | C(i) ∩ C(i+1) | = M – 1 and         
| C(i) ∪ C(i+1) | = M + 1. 

The strength of the path C(1),...,C(n) is 
minD2 { (N[{a1,...,a(M–1),b};c], N[{a1,...,a(M–1),c};b]) 

with {a1,...,a(M–1)} : = C(i) ∩ C(i+1), 
b : = C(i) \ C(i+1), and c : = C(i+1) \ C(i) 

    | i = 1,...,(n–1) }. 
 
In other words: The strength of a path is the strength of its weakest link. 

PD2[A,B] : = maxD2 { 
minD2 { (N[{a1,...,a(M–1),b};c], N[{a1,...,a(M–1),c};b]) 

with {a1,...,a(M–1)} : = C(i) ∩ C(i+1), 
b : = C(i) \ C(i+1), and c : = C(i+1) \ C(i) 

    | i = 1,...,(n–1) } 
| C(1),...,C(n) is a path from set A to set B }. 

In other words: PD2[A,B] ∈ 0 × 0 is the strength of the strongest 
path from set  A ∈ AM to set B ∈ AM \ {A}. 

(9.1.3.1) The binary relation M on AM is defined as follows: 
AB ∈ M : ⇔ PD2[A,B] D2 PD2[B,A]. 

(9.1.3.2) M : = { A ∈ AM | ∀ B ∈ AM \ {A}: BA ∉ M } is the set 
of potential winning sets. 
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Stage 4: 
 

For all A,B ∈ M: Suppose there is an alternative a ∈ A \ B with     
ab ∈ 1 for every alternative b ∈ B \ A, then the set A disqualifies the 
set B. 
 
The winning set of Schulze STV is that set A ∈ M that is not 
disqualified by some other set B ∈ M. 
 
 

9.2. Example A53 
 

To illustrate Schulze STV, we will use a rather large example because 
smaller examples usually don’t address all aspects of an STV election. We 
will use example A53 from Tideman’s database. This example is analysed in 
great detail by Tideman (2000). Example A53 consists of V = 460 voters and 
C = 10 alternatives running for M = 4 seats. 

Example A53 is interesting because the Newland-Britton (1997) method, 
the Meek (1969, 1970; Hill, 1987) method, and the Warren (1994) method 
each find a different set of winners. The Newland-Britton method chooses  
a, b, g, and j. The Meek method chooses a, d, g, and j. The Warren method 
chooses a, f, g, and j. 

Example A53 is decribed in the following table 9.2.1. For example, row 
233 says that voter 233 gives a “1” to alternative b, a “2” to alternative c, a 
“3” to alternative d, a “4” to alternative a, and a “5” to alternative j. Voter 
233 doesn’t rank any of the other alternatives. 
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 a b c d e f g h i j 
1 1 - - - - 4 3 2 - - 
2 1 2 4 5 3 9 6 10 8 7 
3 2 6 10 7 3 8 5 9 1 4 
4 - - - - - - - - - 1 
5 - - - - - - - - - 1 
6 3 - - - 5 4 6 7 2 1 
7 4 - 3 - - - - - 2 1 
8 3 - 1 - - - - - 4 2 
9 2 - 1 - - - - - - - 
10 3 - - - - - - 2 - 1 
11 - 5 - - 1 4 2 - 3 6 
12 - 4 5 - 1 - 2 3 - - 
13 7 9 6 10 1 5 3 4 8 2 
14 4 5 3 9 1 10 2 6 8 7 
15 - - - - 2 - 3 - 1 4 
16 - - 4 - 2 - 3 - 1 - 
17 2 - 5 - 1 - 4 - 6 3 
18 - - - - 1 4 2 - - 3 
19 3 - - 6 - 4 5 1 - 2 
20 4 - - 5 - 2 3 - - 1 
21 4 9 7 5 8 2 10 6 3 1 
22 4 7 3 6 8 2 10 5 9 1 
23 4 - - 6 3 2 - 5 - 1 
24 - 5 - 4 - 3 - - 2 1 
25 - - - 4 - 3 - - 2 1 
26 4 10 9 8 7 3 5 6 2 1 
27 4 - - 6 - 3 - 5 2 1 
28 3 4 - 2 - - - 5 - 1 
29 3 - - 2 - - - - - 1 
30 8 9 7 2 3 4 5 6 10 1 
31 5 7 6 2 3 4 10 9 8 1 
32 10 8 4 2 3 9 7 5 6 1 
33 4 6 - 2 5 3 - - - 1 
34 - - - 2 - - 3 - - 1 
35 3 9 7 2 4 8 6 10 5 1 
36 1 5 2 - - - 3 - - 4 
37 1 7 5 3 9 6 8 4 10 2 
38 1 7 5 6 3 2 8 9 10 4 
39 1 2 4 3 10 9 5 8 7 6 
40 1 - - 3 6 2 - 4 - 5 
41 1 - - - - - 2 - - - 
42 1 8 5 2 4 3 10 9 7 6 
43 1 - - 2 3 5 - - 4 - 
44 1 2 3 5 7 4 8 9 10 6 
45 1 2 7 4 6 5 9 10 8 3 
46 1 2 3 5 4 6 10 11 12 7 
47 1 3 8 7 6 5 4 2 9 10 
48 1 7 6 4 5 2 8 10 9 3 
49 1 3 7 6 10 4 9 5 8 2 
50 1 8 10 4 7 2 3 9 6 5 
51 1 - 6 - 2 3 - 7 5 - 
52 1 3 6 10 7 9 5 2 8 4 
53 1 10 4 9 7 2 5 8 3 6 
54 1 - - - - 2 - 3 - 4 
55 1 2 - - - - 3 - - 4 
56 4 5 - - 6 - - 3 2 1 
57 4 5 6 10 8 9 7 3 2 1 
58 4 5 9 6 7 8 10 2 3 1 
59 6 3 5 7 10 4 8 2 9 1 
60 10 3 4 9 5 6 8 2 7 1 

 
Table 9.2.1 (part 1 of 4): Example A53  
 

 a b c d e f g h i j 
61 3 4 2 7 8 9 10 5 6 1 
62 7 3 6 9 2 8 5 10 4 1 
63 4 3 7 9 2 6 10 5 8 1 
64 5 3 10 7 2 9 8 6 4 1 
65 - 1 2 - - - - - - 3 
66 - - 1 6 2 - 3 - 4 5 
67 - - 4 3 1 - 2 - - - 
68 2 9 8 5 1 6 3 7 10 4 
69 6 3 7 9 2 8 1 10 4 5 
70 4 9 6 10 3 7 1 8 5 2 
71 3 9 5 6 4 8 1 7 10 2 
72 2 - - - - - 1 4 - 3 
73 7 4 8 5 9 6 1 2 10 3 
74 9 10 8 5 7 6 1 2 3 4 
75 - - - 2 3 - 1 - - - 
76 7 8 10 3 2 6 1 9 4 5 
77 4 3 2 - - - 1 - - - 
78 3 7 4 5 6 8 1 9 10 2 
79 5 10 6 7 2 8 1 9 3 4 
80 2 5 4 6 7 10 1 8 9 3 
81 - - - - - - 1 - - 2 
82 - - - 3 - - 1 2 - - 
83 2 4 3 9 10 8 1 5 7 6 
84 4 7 2 6 5 8 1 9 10 3 
85 - 2 - - 3 - 1 - - - 
86 2 5 - - 4 - 1 - - 3 
87 5 - - 2 4 - 1 3 - 6 
88 - - - - - - 1 - 2 - 
89 2 - 4 - - - 1 - - 3 
90 7 3 4 2 9 6 1 8 10 5 
91 2 8 5 7 6 3 1 10 9 4 
92 7 10 6 9 5 4 1 8 3 2 
93 - 2 - - - - 1 3 - - 
94 3 - - 2 - - 1 - - - 
95 - - - - - 3 1 - 2 4 
96 - - - 2 - 3 1 4 - - 
97 - - - - - 2 1 - 3 4 
98 6 10 8 9 7 5 1 4 2 3 
99 3 - - 2 - - 1 - - - 
100 5 - - 4 - - 1 3 - 2 
101 4 - - 3 5 - 1 - - 2 
102 3 - - - - 2 1 - 5 4 
103 4 3 - 2 - - 1 - 5 6 
104 3 - - 4 - 2 1 - 6 5 
105 - 4 - 2 - 3 1 - - - 
106 3 - 4 - 5 - 1 6 - 2 
107 10 5 3 2 4 9 1 7 8 6 
108 3 - - 1 - - - - - 2 
109 - 3 2 1 - 4 - - - - 
110 2 - - 1 - - - - 4 3 
111 - - - 1 - - - - - 2 
112 5 4 - 1 - - - 3 - 2 
113 - - - 1 - - 2 - - - 
114 6 5 10 1 3 7 2 8 9 4 
115 - - - 1 4 - - - 3 2 
116 2 - - 1 - - - - - 3 
117 - 4 - 1 - 3 - - - 2 
118 4 3 - 1 - - 2 - - - 
119 2 5 6 1 3 4 7 10 9 8 
120 - - - 1 - - 2 - - - 
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 a b c d e f g h i j 
121 2 - - 1 - 3 - - - 4 
122 - - - 1 - - 2 - - 3 
123 3 4 - 1 - - 2 - - - 
124 - - - 1 - - - - - - 
125 - - - 1 - 2 4 - 3 - 
126 - - - 1 - - - - - - 
127 4 5 7 1 2 9 6 8 3 10 
128 3 - - 1 - - - 2 - 4 
129 2 3 - 1 - - 5 - - 4 
130 3 10 6 1 4 8 7 9 5 2 
131 2 - 4 1 - 5 - - - 3 
132 - - - 1 - - - 3 - 2 
133 - - - 1 2 3 - - - 4 
134 3 2 7 1 6 9 10 5 8 4 
135 2 5 6 1 - 3 4 - - - 
136 5 4 8 1 6 9 7 3 2 10 
137 2 9 5 1 3 10 8 6 4 7 
138 - - - 1 - 2 - 3 - 4 
139 - - - 1 2 3 - - - - 
140 9 7 8 1 2 6 3 10 5 4 
141 3 4 6 1 7 9 2 10 8 5 
142 5 6 7 1 2 9 3 10 4 8 
143 3 9 6 1 10 4 2 7 8 5 
144 - 4 - 1 5 3 - - 2 - 
145 - - - 1 - - - - - - 
146 2 6 9 1 8 5 10 3 7 4 
147 2 - 3 1 - - - - 4 5 
148 - - - 1 - 2 - - - 3 
149 2 - - 1 4 - - - - 3 
150 3 6 5 2 7 10 8 9 1 4 
151 8 6 7 4 5 10 9 3 1 2 
152 - - - 3 - - 4 1 - 2 
153 7 - 1 3 6 5 4 - - 2 
154 - - 1 2 - - - - - - 
155 - 5 2 3 - 4 - - 1 6 
156 - - 2 3 5 - 4 - 1 6 
157 5 4 9 2 1 6 7 8 10 3 
158 4 10 5 2 1 6 3 9 8 7 
159 - - - 2 1 - - - - - 
160 2 - - 3 1 - 5 - - 4 
161 2 9 7 5 1 8 6 4 10 3 
162 - - 1 3 2 4 - - - - 
163 3 8 9 4 10 1 5 2 6 7 
164 - - 6 4 3 1 - 5 - 2 
165 2 8 7 3 4 1 5 9 10 6 
166 8 6 5 3 10 1 4 7 9 2 
167 5 - 6 3 - 1 - 4 - 2 
168 6 8 5 7 4 1 9 3 10 2 
169 4 - - 3 - 1 - - 5 2 
170 6 8 7 2 9 1 10 5 4 3 
171 2 - - 3 - 1 - - 4 - 
172 8 9 6 2 4 1 3 10 5 7 
173 2 - - 5 3 1 4 - - - 
174 - 5 - 3 4 1 - - - 2 
175 2 6 7 3 5 1 8 10 9 4 
176 9 10 3 8 2 1 4 7 5 6 
177 4 - - 2 - 1 3 - - - 
178 9 6 4 5 2 3 10 8 1 7 
179 5 - 4 - - 3 - 2 - 1 
180 - - 4 - 6 3 5 2 - 1 

 
Table 9.2.1 (part 2 of 4): Example A53 
 

 a b c d e f g h i j 
181 3 - - - - 5 6 2 4 1 
182 3 - - - - 4 - 2 - 1 
183 4 - - - - 2 - 3 - 1 
184 - - - - - 2 3 - - 1 
185 4 - - - - 2 3 - - 1 
186 3 - - - - 2 4 - - 1 
187 3 4 5 8 7 2 6 9 10 1 
188 7 8 9 10 3 6 4 2 5 1 
189 - 4 - - 2 3 - - - 1 
190 4 9 7 10 2 5 8 3 6 1 
191 3 5 8 6 10 2 7 9 4 1 
192 10 5 6 9 4 3 7 8 2 1 
193 6 4 - 5 - 3 - 7 2 1 
194 5 8 6 10 4 3 9 7 2 1 
195 - 7 - - 5 3 4 6 2 1 
196 5 10 9 4 6 7 3 8 1 2 
197 - - - - 3 - 2 - 1 - 
198 - - - - - 3 2 - 1 4 
199 - - - - - - 2 1 - - 
200 3 9 1 5 10 6 2 4 8 7 
201 2 7 1 5 6 4 3 8 9 10 
202 2 6 1 7 9 10 3 8 5 4 
203 - 5 1 - - - 2 3 4 - 
204 - - 1 - 4 - 3 - 5 2 
205 9 10 1 8 7 3 2 5 4 6 
206 2 - 3 5 - - 4 1 - - 
207 4 - - - 3 - - 2 - 1 
208 4 - - - 3 - - 2 - 1 
209 - - - - 2 - - - - 1 
210 - - - - 2 - - 3 4 1 
211 2 6 5 8 3 9 7 1 10 4 
212 3 - 4 - - 2 1 - - - 
213 - - - - - - 1 2 3 - 
214 - 4 - - - 2 1 3 - - 
215 - - 5 - 6 4 1 - 3 2 
216 5 4 6 - 8 2 1 7 - 3 
217 8 10 3 6 7 2 1 4 9 5 
218 - - - 3 - 2 1 - 4 5 
219 3 4 5 10 6 9 1 8 7 2 
220 2 6 10 8 7 4 1 5 9 3 
221 - 3 - 2 - 4 1 - - - 
222 - - - 3 4 - - - 2 1 
223 3 - 5 4 - - - 2 - 1 
224 4 - - 3 - - - 2 - 1 
225 3 - 2 4 - - - - - 1 
226 4 9 2 6 5 7 8 3 10 1 
227 3 7 4 6 5 9 8 2 10 1 
228 5 4 - 3 2 - - - - 1 
229 3 1 - - - 5 4 - 6 2 
230 2 1 - - - - 4 - 3 - 
231 2 1 - - - 3 - - 4 - 
232 - 1 - - - - 3 - - 2 
233 4 1 2 3 - - - - - 5 
234 6 1 5 7 4 8 2 9 10 3 
235 9 1 5 10 4 2 6 8 7 3 
236 4 1 5 9 3 6 8 7 10 2 
237 - 1 - - 3 - 2 - - - 
238 2 1 3 - - 4 5 - - - 
239 - 1 - - 2 - - 3 - 4 
240 - 1 - - - - - - - - 
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 a b c d e f g h i j 
241 3 1 7 2 8 9 4 10 6 5 
242 - 1 - - 2 - 3 4 5 6 
243 2 1 9 6 5 7 10 3 8 4 
244 7 1 8 3 6 4 5 9 10 2 
245 5 1 6 7 2 10 3 9 8 4 
246 2 1 8 5 9 6 10 7 3 4 
247 2 1 3 10 4 5 7 6 8 9 
248 - 1 - - 2 4 - 3 - - 
249 6 1 4 8 7 2 5 10 9 3 
250 2 1 9 10 7 6 4 5 8 3 
251 4 1 5 6 - - 2 7 - 3 
252 - 1 - - - 2 - - 3 4 
253 - 1 5 - 2 - 3 - - 4 
254 3 1 5 2 8 4 10 7 9 6 
255 6 1 5 7 4 8 3 9 2 10 
256 5 1 6 3 2 9 4 7 8 10 
257 9 1 6 5 3 10 2 4 7 8 
258 6 1 3 5 4 10 2 8 9 7 
259 - 1 - - - 2 - - 3 4 
260 - 1 - - 4 3 5 - - 2 
261 - 1 4 - - 2 - - - 3 
262 - 1 - - 2 - - 3 4 - 
263 - 1 - - - 4 2 - - 3 
264 5 1 9 4 2 6 10 7 8 3 
265 2 1 8 7 6 5 9 10 3 4 
266 3 1 7 6 9 5 4 8 10 2 
267 9 2 8 3 7 10 4 6 1 5 
268 - 3 - 4 - 5 - 1 - 2 
269 - 3 2 - 6 - 5 1 - 4 
270 7 4 2 10 5 9 6 1 3 8 
271 6 4 3 10 5 7 9 1 8 2 
272 3 2 1 - - - - - 4 - 
273 - 2 1 - - 3 - - - 4 
274 9 5 8 7 2 6 10 1 3 4 
275 4 2 8 7 1 10 9 5 3 6 
276 - 2 - - 1 - - - - - 
277 4 5 6 8 3 9 10 1 7 2 
278 6 3 5 10 1 4 9 7 8 2 
279 2 6 9 10 1 7 8 3 4 5 
280 6 4 - - 3 5 - 1 - 2 
281 7 2 8 6 4 9 3 10 5 1 
282 3 2 - - - - 4 - - 1 
283 5 2 8 4 3 6 10 7 9 1 
284 7 2 9 8 3 10 4 5 6 1 
285 - 2 - 3 - - - 4 - 1 
286 5 2 10 7 4 3 8 6 9 1 
287 4 2 6 5 3 8 7 10 9 1 
288 2 3 9 5 10 6 7 4 8 1 
289 2 4 - 6 3 - - 5 - 1 
290 2 4 - - 5 6 3 - - 1 
291 2 3 - - - - 5 4 - 1 
292 2 3 10 4 9 5 6 7 8 1 
293 2 - - - 3 - 4 5 - 1 
294 2 - - - - 4 - 3 - 1 
295 2 3 4 8 7 10 5 6 9 1 
296 2 - - - - 3 - 4 - 1 
297 2 - - - - 3 4 - - 1 
298 2 - 3 4 - 5 - - - 1 
299 2 - - - 3 - - - 4 1 
300 2 5 4 3 6 - - - - 1 

 
Table 9.2.1 (part 3 of 4): Example A53 
 

 a b c d e f g h i j 
301 2 - - - - - 4 - 3 1 
302 2 10 3 4 6 9 5 7 8 1 
303 2 - 5 - - 3 - - 4 1 
304 2 3 6 7 8 4 9 5 10 1 
305 2 5 - - - - - 4 3 1 
306 2 3 - - - - - 4 - 1 
307 2 3 10 8 7 4 9 5 6 1 
308 2 - - - - 3 - 2 3 1 
309 2 3 - - - - 4 - - 1 
310 2 9 4 5 6 7 3 10 8 1 
311 2 3 6 4 - - - - 5 1 
312 2 - - 4 - - - - 3 1 
313 2 10 3 9 6 5 8 7 4 1 
314 2 - - - - 3 - 4 - 1 
315 2 3 5 8 7 6 9 4 10 1 
316 2 - - 3 - - 4 - - 1 
317 2 3 7 6 8 4 9 5 10 1 
318 2 4 - 3 - - 5 - - 1 
319 2 - 5 3 4 - 6 - - 1 
320 2 3 6 10 5 4 7 8 9 1 
321 2 4 7 8 5 9 10 3 6 1 
322 2 - - 5 3 - 4 - - 1 
323 - - 4 - 1 - - - 3 2 
324 - - - - 1 - - 3 4 2 
325 - - - - 1 - - - - - 
326 - - - - 1 - - - - 2 
327 2 - 3 - 1 - - - - - 
328 4 - 5 3 - - 1 - - 2 
329 5 - 2 4 - 3 1 - - - 
330 - - - 2 - - 1 - - 3 
331 - - - 2 - - 1 4 - 3 
332 - - 3 2 4 5 1 - - - 
333 3 5 - - - 4 1 6 - 2 
334 5 - 6 4 2 - 1 - 3 - 
335 2 3 - - - - 1 - - - 
336 - 3 2 - - - 1 - - - 
337 6 3 7 2 4 10 1 8 9 5 
338 - 4 5 - - 2 1 - 3 - 
339 - 3 - 4 - - 1 2 - - 
340 - - - - - - 1 - - - 
341 8 9 7 2 3 4 1 10 5 6 
342 2 3 5 6 9 10 1 4 8 7 
343 2 7 3 4 9 8 1 10 6 5 
344 5 4 9 3 8 10 1 7 2 6 
345 - - - - - - 1 - - - 
346 2 - - 4 3 - 1 6 7 5 
347 4 9 7 10 3 2 1 8 6 5 
348 9 8 7 2 10 6 1 5 4 3 
349 3 - - - - - 2 - - 1 
350 - 4 - - - - 2 - 3 1 
351 - - - - - - 2 3 4 1 
352 - - - - - - 2 - - 1 
353 3 - - - 4 - 2 - - 1 
354 3 4 8 7 10 9 2 6 5 1 
355 3 - - - - - 2 - 4 1 
356 - 4 - 3 - - 2 - - 1 
357 5 8 7 3 10 4 2 9 6 1 
358 - - - 3 4 - 2 - - 1 
359 - 4 - 3 - - 2 - - 1 
360 - 4 - - - 3 2 - - 1 

 
 
 



Markus Schulze, “The Schulze Method of Voting” 

 188 

 a b c d e f g h i j 
361 4 3 - - - - 2 - - 1 
362 - 3 - 4 - - 2 - - 1 
363 - - - - - - 3 - 2 1 
364 - - - - 4 - 2 3 1 - 
365 3 7 8 10 9 6 4 2 5 1 
366 5 9 10 6 8 4 3 2 7 1 
367 7 4 2 6 8 5 3 10 9 1 
368 - 4 - - 3 1 2 - - - 
369 3 7 6 10 9 1 2 4 8 5 
370 3 4 - - - 1 2 - - 5 
371 4 2 - - - 1 - 3 - - 
372 5 6 7 10 8 1 2 3 9 4 
373 4 3 5 9 8 1 6 10 7 2 
374 4 8 5 9 7 1 3 - 2 6 
375 2 4 3 5 6 1 10 8 9 7 
376 5 9 2 10 3 1 6 7 4 8 
377 - 2 - - - 1 3 - 4 5 
378 6 7 10 9 5 1 2 9 4 3 
379 3 2 - 4 - 1 - - - - 
380 5 6 4 10 3 1 2 7 9 8 
381 5 4 7 8 1 3 6 9 10 2 
382 2 5 - - 1 4 - - 3 - 
383 3 6 7 9 1 2 8 5 4 10 
384 - 2 5 - 3 1 4 - - - 
385 4 - 3 - - 1 - - - 2 
386 4 - - - 2 1 - - - 3 
387 - - 3 - - 1 2 - - - 
388 - - 3 - - 1 4 - - 2 
389 - - - - - 1 3 4 - 2 
390 - - 5 - - 1 - 3 4 2 
391 5 - 3 - - 1 4 - 6 2 
392 - - - - 2 1 5 - 3 4 
393 4 - 5 - - 2 - - 1 3 
394 - - - - 1 2 3 - 4 - 
395 - - 1 - 2 3 - 4 - - 
396 - - 2 - 1 3 - 4 - 5 
397 - - 4 - 3 1 2 - - - 
398 3 - - - - 1 - - - 2 
399 - - - - - 1 - - - 2 
400 - - 2 - - 1 - - - - 
401 1 7 5 2 10 8 6 9 3 4 
402 1 - 3 - - - 2 4 - - 
403 1 6 8 2 9 5 7 4 10 3 
404 1 - - 2 - - - - - 3 
405 1 - - - - - 2 - - 3 
406 1 4 - - - - - 2 - 3 
407 1 - - 5 4 - - - 3 2 
408 1 - 4 5 - 6 3 7 8 2 
409 1 - 5 3 4 - 2 - - - 
410 1 10 9 8 6 4 7 2 5 3 

 
Table 9.2.1 (part 4 of 4): Example A53 
 
 
 
 
 
 
 
 
 
 

 a b c d e f g h i j 
411 1 - 3 2 - - 4 - - - 
412 1 3 - - 2 4 - - - - 
413 1 10 6 4 9 8 3 7 2 5 
414 1 - - - - 2 - - - - 
415 1 - 2 - - - - 3 - 4 
416 1 4 - - - 3 2 - - 5 
417 1 3 - - - 2 - - 4 - 
418 1 - - 4 - 5 3 - - 2 
419 1 7 4 7 8 9 3 5 6 2 
420 1 - - - - 2 3 - - 4 
421 1 6 3 7 2 9 5 4 10 8 
422 1 - 2 7 8 9 3 4 6 5 
423 1 - - 2 - - 3 - - - 
424 1 10 9 2 5 3 7 6 8 4 
425 1 3 - - - - - 4 - 2 
426 1 - - - - 2 - - - 3 
427 1 6 - - 3 - - 4 5 2 
428 1 8 9 4 7 2 3 10 6 5 
429 1 6 10 3 9 7 8 2 4 5 
430 1 - - - - 4 3 - - 2 
431 1 9 2 8 3 10 4 6 7 5 
432 1 4 - - - - - 3 - 2 
433 1 - 3 - - - 4 - - 2 
434 1 - - - - - - - - 2 
435 1 - 3 - - 2 - - 5 4 
436 1 - 2 3 5 - 4 - - 6 
437 1 - - - - 2 3 - - 4 
438 1 4 10 6 5 8 2 9 3 7 
439 1 - - 3 - - 4 - - 2 
440 1 - - - - - 2 4 3 - 
441 1 6 2 5 3 9 10 7 4 8 
442 1 8 9 2 4 7 10 5 6 3 
443 1 - - - - - 2 - - - 
444 1 2 - - - - 4 - 5 3 
445 1 7 8 9 6 4 10 3 5 2 
446 1 3 - - - 5 - 4 - 2 
447 1 - 2 4 3 - - - - - 
448 - 1 - - - - - - - - 
449 1 4 - 5 - 3 - - - 2 
450 1 2 6 9 5 7 8 3 10 4 
451 1 2 3 - - - 4 - - - 
452 1 3 - 4 - - - - - 2 
453 1 - - 2 3 - - - - 4 
454 1 3 2 8 7 10 9 6 4 5 
455 1 - - 3 - 4 - - - 2 
456 1 - - - - 2 - 4 - 3 
457 1 6 10 2 5 8 3 9 4 7 
458 1 4 10 5 9 8 6 2 7 3 
459 1 - 3 2 - - - - - - 
460 1 3 7 2 10 8 6 9 4 5 
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9.2.1. Proportional Completion 

We apply proportional completion separately for the calculation of each 
link. The strength of the links {b,c,e,j} → {a,c,e,j}, {b,c,e,j} → {a,b,e,j}, 
{b,c,e,j} → {a,b,c,j}, and {b,c,e,j} → {a,b,c,e} depends only on whether the 
individual voter strictly prefers the different candidates of the set {b,c,e,j} to 
candidate a or strictly prefers candidate a to the different candidates of the 
set {b,c,e,j} or is indifferent between the different candidates of the set 
{b,c,e,j} and candidate a. Therefore, the fact, that we apply proportional 
completion for every link separately, means that only 3^C = 81 possible 
voting patterns need to be considered. Table 9.2.1.1 lists these 81 possible 
voting patterns, where “1” means that a voter with this voting pattern strictly 
prefers this candidate to candidate a, a “2” means that this voter is indifferent 
between this candidate and candidate a, and a “3” means that this voter 
strictly prefers candidate a to this candidate. 

Throughout section 9.2.1, w i
j  is the number of voters at stage j who are 

using voting pattern i. 
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voting 
pattern b c e j 

#1 1 1 1 1 
#2 1 1 1 2 
#3 1 1 1 3 
#4 1 1 2 1 
#5 1 1 2 2 
#6 1 1 2 3 
#7 1 1 3 1 
#8 1 1 3 2 
#9 1 1 3 3 

#10 1 2 1 1 
#11 1 2 1 2 
#12 1 2 1 3 
#13 1 2 2 1 
#14 1 2 2 2 
#15 1 2 2 3 
#16 1 2 3 1 
#17 1 2 3 2 
#18 1 2 3 3 
#19 1 3 1 1 
#20 1 3 1 2 
#21 1 3 1 3 
#22 1 3 2 1 
#23 1 3 2 2 
#24 1 3 2 3 
#25 1 3 3 1 
#26 1 3 3 2 
#27 1 3 3 3 
#28 2 1 1 1 
#29 2 1 1 2 
#30 2 1 1 3 
#31 2 1 2 1 
#32 2 1 2 2 
#33 2 1 2 3 
#34 2 1 3 1 
#35 2 1 3 2 
#36 2 1 3 3 
#37 2 2 1 1 
#38 2 2 1 2 
#39 2 2 1 3 
#40 2 2 2 1 

 

voting 
pattern b c e j 

#41 2 2 2 2 
#42 2 2 2 3 
#43 2 2 3 1 
#44 2 2 3 2 
#45 2 2 3 3 
#46 2 3 1 1 
#47 2 3 1 2 
#48 2 3 1 3 
#49 2 3 2 1 
#50 2 3 2 2 
#51 2 3 2 3 
#52 2 3 3 1 
#53 2 3 3 2 
#54 2 3 3 3 
#55 3 1 1 1 
#56 3 1 1 2 
#57 3 1 1 3 
#58 3 1 2 1 
#59 3 1 2 2 
#60 3 1 2 3 
#61 3 1 3 1 
#62 3 1 3 2 
#63 3 1 3 3 
#64 3 2 1 1 
#65 3 2 1 2 
#66 3 2 1 3 
#67 3 2 2 1 
#68 3 2 2 2 
#69 3 2 2 3 
#70 3 2 3 1 
#71 3 2 3 2 
#72 3 2 3 3 
#73 3 3 1 1 
#74 3 3 1 2 
#75 3 3 1 3 
#76 3 3 2 1 
#77 3 3 2 2 
#78 3 3 2 3 
#79 3 3 3 1 
#80 3 3 3 2 
#81 3 3 3 3 

 
Table 9.2.1.1: The 81 possible voting patterns 
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Step 1 

At first, we determine which profile is used by how many voters. Table 
9.2.1.2 lists, for every voting pattern, how many voters (column “number of 
voters”) and which voters (column “voters”) are using this voting pattern. 

 

voting 
pattern 

number of 
voters b c e j voters 

#1 w 1
1  = 17 1 1 1 1 32, 60, 62, 107, 140, 151, 178, 192, 234, 

235, 253, 257, 267, 269, 271, 274, 278 
#2 w 2

1  = 2 1 1 1 2 12, 384 

#3 w 3
1  = 3 1 1 1 3 255, 258, 270 

#4 w 4
1  = 4 1 1 2 1 65, 155, 261, 273 

#5 w 5
1  = 4 1 1 2 2 109, 203, 336, 338 

#7 w 7
1  = 6 1 1 3 1 59, 90, 166, 249, 348, 367 

#9 w 9
1  = 3 1 1 3 3 77, 233, 272 

#10 w 10
1  = 7 1 2 1 1 11, 174, 189, 195, 239, 242, 260 

#11 w 11
1  = 7 1 2 1 2 85, 144, 237, 248, 262, 276, 368 

#13 w 13
1  = 14 1 2 2 1 24, 117, 232, 252, 259, 263, 268, 285, 

350, 356, 359, 360, 362, 377 
#14 w 14

1  = 7 1 2 2 2 93, 105, 214, 221, 240, 339, 448 

#19 w 19
1  = 18 1 3 1 1 

63, 64, 69, 114, 157, 228, 236, 244, 245, 
264, 280, 281, 283, 284, 286, 287, 337, 

381 
#21 w 21

1  = 2 1 3 1 3 256, 275 

#25 w 25
1  = 10 1 3 3 1 73, 112, 193, 216, 229, 251, 266, 282, 

361, 373 

#27 w 27
1  = 17 1 3 3 3 

103, 118, 134, 136, 230, 231, 238, 241, 
243, 246, 247, 250, 254, 265, 344, 371, 

379 
#28 w 28

1  = 8 2 1 1 1 66, 156, 164, 180, 204, 215, 323, 396 

#29 w 29
1  = 6 2 1 1 2 16, 67, 162, 332, 395, 397 

#31 w 31
1  = 2 2 1 2 1 388, 390 

#32 w 32
1  = 3 2 1 2 2 154, 387, 400 

#37 w 37
1  = 11 2 2 1 1 15, 18, 115, 133, 209, 210, 222, 324, 326, 

358, 392 
#38 w 38

1  = 7 2 2 1 2 75, 139, 159, 197, 325, 364, 394 

#40 w 40
1  = 23 2 2 2 1 

4, 5, 25, 34, 81, 95, 97, 111, 122, 132, 
138, 148, 152, 184, 198, 218, 330, 331, 

351, 352, 363, 389, 399 
Table 9.2.1.2 (1 of 2): voting patterns is example A53 
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voting 
pattern 

number of 
voters b c e j voters 

#41 w 41
1  = 13 2 2 2 2 82, 88, 96, 113, 120, 124, 125, 126, 145, 

199, 213, 340, 345 

#55 w 55
1  = 11 3 1 1 1 13, 30, 74, 92, 153, 168, 172, 176, 205, 

217, 341 
#57 w 57

1  = 3 3 1 1 3 14, 376, 380 

#61 w 61
1  = 10 3 1 3 1 7, 8, 22, 61, 84, 179, 225, 226, 385, 391 

#63 w 63
1  = 5 3 1 3 3 9, 200, 201, 202, 329 

#73 w 73
1  = 13 3 3 1 1 23, 31, 70, 76, 79, 188, 190, 194, 207, 

208, 277, 378, 386 

#75 w 75
1  = 14 3 3 1 3 17, 68, 87, 127, 142, 158, 160, 161, 279, 

327, 334, 347, 382, 383 

#79 w 79
1  = 84 3 3 3 1 

6, 10, 19, 20, 21, 26, 27, 28, 29, 33, 35, 
56, 57, 58, 71, 78, 98, 100, 101, 106, 108, 
130, 167, 169, 170, 181, 182, 183, 185, 
186, 187, 191, 196, 219, 223, 224, 227, 
288, 289, 290, 291, 292, 293, 294, 295, 
296, 297, 298, 299, 300, 301, 302, 303, 
304, 305, 306, 307, 308, 309, 310, 311, 
312, 313, 314, 315, 316, 317, 318, 319, 
320, 321, 322, 328, 333, 349, 353, 354, 

355, 357, 365, 366, 372, 393, 398 

#81 w 81
1  = 126 3 3 3 3 

1, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
72, 80, 83, 86, 89, 91, 94, 99, 102, 104, 
110, 116, 119, 121, 123, 128, 129, 131, 
135, 137, 141, 143, 146, 147, 149, 150, 
163, 165, 171, 173, 175, 177, 206, 211, 
212, 220, 335, 342, 343, 346, 369, 370, 
374, 375, 401, 402, 403, 404, 405, 406, 
407, 408, 409, 410, 411, 412, 413, 414, 
415, 416, 417, 418, 419, 420, 421, 422, 
423, 424, 425, 426, 427, 428, 429, 430, 
431, 432, 433, 434, 435, 436, 437, 438, 
439, 440, 441, 442, 443, 444, 445, 446, 
447, 449, 450, 451, 452, 453, 454, 455, 

456, 457, 458, 459, 460 
Table 9.2.1.2 (2 of 2): voting patterns is example A53 
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Step 2 
 

Each time, when we apply proportional completion to a voting pattern, 
we apply it to a voting pattern, where the number of alternatives with a “2” 
is the maximum. As, in each stage, a voting pattern is replaced by voting 
patterns with smaller numbers of alternatives with a “2”, it is guaranteed that 
those voting patterns, to which proportional completion has already been 
applied at earlier stages of the proportional completion procedure, cannot 
reappear at later stages. 

 
So first, we apply proportional completion to voting pattern #41. 

Applying proportional completion to a voting pattern where voters are 
indifferent between all candidates simply means that the weight of every 
other voting pattern is multiplicated by the same factor. 
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 1

1  = 17.494407 1 1 1 1 

#2 w 2
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 2

1  = 2.058166 1 1 1 2 

#3 w 3
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 3

1  = 3.087248 1 1 1 3 

#4 w 4
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 4

1  = 4.116331 1 1 2 1 

#5 w 5
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 5

1  = 4.116331 1 1 2 2 

#7 w 7
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 7

1  = 6.174497 1 1 3 1 

#9 w 9
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 9

1  = 3.087248 1 1 3 3 

#10 w 10
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 10

1  = 7.203579 1 2 1 1 

#11 w 11
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 11

1  = 7.203579 1 2 1 2 

#13 w 13
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 13

1  = 14.407159 1 2 2 1 

#14 w 14
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 14

1  = 7.203579 1 2 2 2 

#19 w 19
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 19

1  = 18.523490 1 3 1 1 

#21 w 21
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 21

1  = 2.058166 1 3 1 3 

#25 w 25
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 25

1  = 10.290828 1 3 3 1 

#27 w 27
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 27

1  = 17.494407 1 3 3 3 

#28 w 28
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 28

1  = 8.232662 2 1 1 1 

#29 w 29
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 29

1  = 6.174497 2 1 1 2 

#31 w 31
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 31

1  = 2.058166 2 1 2 1 

#32 w 32
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 32

1  = 3.087248 2 1 2 2 

#37 w 37
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 37

1  = 11.319911 2 2 1 1 

#38 w 38
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 38

1  = 7.203579 2 2 1 2 

#40 w 40
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 40

1  = 23.668904 2 2 2 1 

#55 w 55
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 55

1  = 11.319911 3 1 1 1 

#57 w 57
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 57

1  = 3.087248 3 1 1 3 

#61 w 61
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 61

1  = 10.290828 3 1 3 1 

#63 w 63
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 63

1  = 5.145414 3 1 3 3 

#73 w 73
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 73

1  = 13.378076 3 3 1 1 

#75 w 75
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 75

1  = 14.407159 3 3 1 3 

#79 w 79
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 79

1  = 86.442953 3 3 3 1 

#81 w 81
2  = ( 1 + w 41

1  / ( N – w 41
1 ) ) · w 81

1  = 129.664430 3 3 3 3 
 460.000000     
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Step 3 
 

We now apply proportional completion to voting pattern #14. In voting 
pattern #14, the voters are indifferent between the alternatives in {a, c, e, j}. 
At stage 1, Y : = w 14

1  + w 41
1  = 20 voters were indifferent between all the 

alternatives in {a, c, e, j}. The following N – Y = 440 voters were not 
indifferent between all the alternatives in {a, c, e, j}: 

 

number of voters c e j 
w 1

1  + w 28
1  + w 55

1  = 36 1 1 1 

w 2
1  + w 29

1  = 8 1 1 2 

w 3
1  + w 57

1  = 6 1 1 3 

w 4
1  + w 31

1  = 6 1 2 1 

w 5
1  + w 32

1  = 7 1 2 2 

w 7
1  + w 61

1  = 16 1 3 1 

w 9
1  + w 63

1  = 8 1 3 3 

w 10
1  + w 37

1  = 18 2 1 1 

w 11
1  + w 38

1  = 14 2 1 2 

w 13
1  + w 40

1  = 37 2 2 1 

w 19
1  + w 73

1  = 31 3 1 1 

w 21
1  + w 75

1  = 16 3 1 3 

w 25
1  + w 79

1  = 94 3 3 1 

w 27
1  + w 81

1  = 143 3 3 3 
N – Y = 440    
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Therefore, the w 14
2  = 7.203579 voters with voting pattern #14 are 

replaced by the following voters: 
 
 

voting 
pattern number of voters b c e j 

#1 (w 1
1  + w 28

1 + w 55
1 ) · w 14

2 / ( N – Y ) = 0.589384 1 1 1 1 

#2 (w 2
1  + w 29

1 ) · w 14
2 / ( N – Y ) = 0.130974 1 1 1 2 

#3 (w 3
1  + w 57

1 ) · w 14
2 / ( N – Y ) = 0.098231 1 1 1 3 

#4 (w 4
1  + w 31

1 ) · w 14
2 / ( N – Y ) = 0.098231 1 1 2 1 

#5 (w 5
1  + w 32

1 ) · w 14
2 / ( N – Y ) = 0.114602 1 1 2 2 

#7 (w 7
1  + w 61

1 ) · w 14
2 / ( N – Y ) = 0.2619483 1 1 3 1 

#9 (w 9
1  + w 63

1 ) · w 14
2 / ( N – Y ) = 0.130974 1 1 3 3 

#10 (w 10
1  + w 37

1 ) · w 14
2 / ( N – Y ) = 0.294692 1 2 1 1 

#11 (w 11
1  + w 38

1 ) · w 14
2 / ( N – Y ) = 0.229205 1 2 1 2 

#13 (w 13
1  + w 40

1 ) · w 14
2 / ( N – Y ) = 0.605756 1 2 2 1 

#19 (w 19
1  + w 73

1 ) · w 14
2 / ( N – Y ) = 0.507525 1 3 1 1 

#21 (w 21
1  + w 75

1 ) · w 14
2 / ( N – Y ) = 0.261948 1 3 1 3 

#25 (w 25
1  + w 79

1 ) · w 14
2 / ( N – Y ) = 1.538947 1 3 3 1 

#27 (w 27
1  + w 81

1 ) · w 14
2 / ( N – Y ) = 2.341163 1 3 3 3 

 w 14
2  = 7.203579     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
3  = w 1

2  + 0.589384 = 18.083791 1 1 1 1 

#2 w 2
3  = w 2

2  + 0.130974 = 2.189140 1 1 1 2 

#3 w 3
3  = w 3

2  + 0.098231 = 3.185479 1 1 1 3 

#4 w 4
3  = w 4

2  + 0.098231 = 4.214562 1 1 2 1 

#5 w 5
3  = w 5

2  + 0.114602 = 4.230933 1 1 2 2 

#7 w 7
3  = w 7

2  + 0.261948 = 6.436445 1 1 3 1 

#9 w 9
3  = w 9

2  + 0.130974 = 3.218222 1 1 3 3 

#10 w 10
3  = w 10

2  + 0.294692 = 7.498271 1 2 1 1 

#11 w 11
3  = w 11

2  + 0.229205 = 7.432784 1 2 1 2 

#13 w 13
3  = w 13

2  + 0.605756 = 15.012914 1 2 2 1 

#19 w 19
3  = w 19

2  + 0.507525 = 19.031015 1 3 1 1 

#21 w 21
3  = w 21

2  + 0.261948 = 2.320114 1 3 1 3 

#25 w 25
3  = w 25

2  + 1.538947 = 11.829774 1 3 3 1 

#27 w 27
3  = w 27

2  + 2.341163 = 19.835570 1 3 3 3 

#28 w 28
3  = w 28

2  = 8.232662 2 1 1 1 

#29 w 29
3  = w 29

2  = 6.174497 2 1 1 2 

#31 w 31
3  = w 31

2  = 2.058166 2 1 2 1 

#32 w 32
3  = w 32

2  = 3.087248 2 1 2 2 

#37 w 37
3  = w 37

2  = 11.319911 2 2 1 1 

#38 w 38
3  = w 38

2  = 7.203579 2 2 1 2 

#40 w 40
3  = w 40

2  = 23.668904 2 2 2 1 

#55 w 55
3  = w 55

2  = 11.319911 3 1 1 1 

#57 w 57
3  = w 57

2  = 3.087248 3 1 1 3 

#61 w 61
3  = w 61

2  = 10.290828 3 1 3 1 

#63 w 63
3  = w 63

2  = 5.145414 3 1 3 3 

#73 w 73
3  = w 73

2  = 13.378076 3 3 1 1 

#75 w 75
3  = w 75

2  = 14.407159 3 3 1 3 

#79 w 79
3  = w 79

2  = 86.442953 3 3 3 1 

#81 w 81
3  = w 81

2  = 129.664430 3 3 3 3 
 460.000000     
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Step 4 
 

We now apply proportional completion to voting pattern #32. In voting 
pattern #32, the voters are indifferent between the alternatives in {a, b, e, j}. 
At stage 1, Y : = w 32

1  + w 41
1  = 16 voters were indifferent between all the 

alternatives in {a, b, e, j}. The following N – Y = 444 voters were not 
indifferent between all the alternatives in {a, b, e, j}: 
 

number of voters b e j 
w 1

1  + w 10
1  + w 19

1  = 42 1 1 1 

w 2
1  + w 11

1  = 9 1 1 2 

w 3
1  + w 21

1  = 5 1 1 3 

w 4
1  + w 13

1  = 18 1 2 1 

w 5
1  + w 14

1  = 11 1 2 2 

w 7
1  + w 25

1  = 16 1 3 1 

w 9
1  + w 27

1  = 20 1 3 3 

w 28
1  + w 37

1  = 19 2 1 1 

w 29
1  + w 38

1  = 13 2 1 2 

w 31
1  + w 40

1  = 25 2 2 1 

w 55
1  + w 73

1  = 24 3 1 1 

w 57
1  + w 75

1  = 17 3 1 3 

w 61
1  + w 79

1  = 94 3 3 1 

w 63
1  + w 81

1  = 131 3 3 3 
N – Y = 444    
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Therefore, the w 32
3  = 3.087248 voters with voting pattern #32 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 (w 1
1  + w 10

1  + w 19
1 ) · w 32

3 / ( N – Y ) = 0.292037 1 1 1 1 

#2 (w 2
1  + w 11

1 ) · w 32
3 / ( N – Y ) = 0.062579 1 1 1 2 

#3 (w 3
1  + w 21

1 ) · w 32
3 / ( N – Y ) = 0.034766 1 1 1 3 

#4 (w 4
1  + w 13

1 ) · w 32
3 / ( N – Y ) = 0.125159 1 1 2 1 

#5 (w 5
1  + w 14

1 ) · w 32
3 / ( N – Y ) = 0.076486 1 1 2 2 

#7 (w 7
1  + w 25

1 ) · w 32
3 / ( N – Y ) = 0.111252 1 1 3 1 

#9 (w 9
1  + w 27

1 ) · w 32
3 / ( N – Y ) = 0.139065 1 1 3 3 

#28 (w 28
1  + w 37

1 ) · w 32
3 / ( N – Y ) = 0.132112 2 1 1 1 

#29 (w 29
1  + w 38

1 ) · w 32
3 / ( N – Y ) = 0.090392 2 1 1 2 

#31 (w 31
1  + w 40

1 ) · w 32
3 / ( N – Y ) = 0.173832 2 1 2 1 

#55 (w 55
1  + w 73

1 ) · w 32
3 / ( N – Y ) = 0.166878 3 1 1 1 

#57 (w 57
1  + w 75

1 ) · w 32
3 / ( N – Y ) = 0.118205 3 1 1 3 

#61 (w 61
1  + w 79

1 ) · w 32
3 / ( N – Y ) = 0.653607 3 1 3 1 

#63 (w 63
1  + w 81

1 ) · w 32
3 / ( N – Y ) = 0.910877 3 1 3 3 

 w 32
3  = 3.087248     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
4  = w 1

3  + 0.292037 = 18.375828 1 1 1 1 

#2 w 2
4  = w 2

3  + 0.062579 = 2.251719 1 1 1 2 

#3 w 3
4  = w 3

3  + 0.034766 = 3.220245 1 1 1 3 

#4 w 4
4  = w 4

3  + 0.125159 = 4.339720 1 1 2 1 

#5 w 5
4  = w 5

3  + 0.076486 = 4.307419 1 1 2 2 

#7 w 7
4  = w 7

3  + 0.111252 = 6.547697 1 1 3 1 

#9 w 9
4  = w 9

3  + 0.139065 = 3.357288 1 1 3 3 

#10 w 10
4  = w 10

3  = 7.498271 1 2 1 1 

#11 w 11
4  = w 11

3  = 7.432784 1 2 1 2 

#13 w 13
4  = w 13

3  = 15.012914 1 2 2 1 

#19 w 19
4  = w 19

3  = 19.031015 1 3 1 1 

#21 w 21
4  = w 21

3  = 2.320114 1 3 1 3 

#25 w 25
4  = w 25

3  = 11.829774 1 3 3 1 

#27 w 27
4  = w 27

3  = 19.835570 1 3 3 3 

#28 w 28
4  = w 28

3  + 0.132112 = 8.364774 2 1 1 1 

#29 w 29
4  = w 29

3  + 0.090392 = 6.264889 2 1 1 2 

#31 w 31
4  = w 31

3  + 0.173832 = 2.231997 2 1 2 1 

#37 w 37
4  = w 37

3  = 11.319911 2 2 1 1 

#38 w 38
4  = w 38

3  = 7.203579 2 2 1 2 

#40 w 40
4  = w 40

3  = 23.668904 2 2 2 1 

#55 w 55
4  = w 55

3  + 0.166878 = 11.486789 3 1 1 1 

#57 w 57
4  = w 57

3  + 0.118205 = 3.205454 3 1 1 3 

#61 w 61
4  = w 61

3  + 0.653607 = 10.944434 3 1 3 1 

#63 w 63
4  = w 63

3  + 0.910877 = 6.056291 3 1 3 3 

#73 w 73
4  = w 73

3  = 13.378076 3 3 1 1 

#75 w 75
4  = w 75

3  = 14.407159 3 3 1 3 

#79 w 79
4  = w 79

3  = 86.442953 3 3 3 1 

#81 w 81
4  = w 81

3  = 129.664430 3 3 3 3 

 460.000000     
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Step 5 
 

We now apply proportional completion to voting pattern #38. In voting 
pattern #38, the voters are indifferent between the alternatives in {a, b, c, j}. 
At stage 1, Y : = w 38

1  + w 41
1  = 20 voters were indifferent between all the 

alternatives in {a, b, c, j}. The following N – Y = 440 voters were not 
indifferent between all the alternatives in {a, b, c, j}: 

 

number of voters b c j 
w 1

1  + w 4
1  + w 7

1  = 27 1 1 1 

w 2
1  + w 5

1  = 6 1 1 2 

w 3
1  + w 9

1  = 6 1 1 3 

w 10
1  + w 13

1  = 21 1 2 1 

w 11
1  + w 14

1  = 14 1 2 2 

w 19
1  + w 25

1  = 28 1 3 1 

w 21
1  + w 27

1  = 19 1 3 3 

w 28
1  + w 31

1  = 10 2 1 1 

w 29
1  + w 32

1  = 9 2 1 2 

w 37
1  + w 40

1  = 34 2 2 1 

w 55
1  + w 61

1  = 21 3 1 1 

w 57
1  + w 63

1  = 8 3 1 3 

w 73
1  + w 79

1  = 97 3 3 1 

w 75
1  + w 81

1  = 140 3 3 3 
N – Y = 440    
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Therefore, the w 38
4  = 7.203579 voters with voting pattern #38 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 (w 1
1  + w 4

1  + w 7
1 ) · w 38

4  / ( N – Y ) = 0.442038 1 1 1 1 

#2 (w 2
1  + w 5

1 ) · w 38
4  / ( N – Y ) = 0.098231 1 1 1 2 

#3 (w 3
1  + w 9

1 ) · w 38
4  / ( N – Y ) = 0.098231 1 1 1 3 

#10 (w 10
1  + w 13

1 ) · w 38
4  / ( N – Y ) = 0.343807 1 2 1 1 

#11 (w 11
1  + w 14

1 ) · w 38
4  / ( N – Y ) = 0.229205 1 2 1 2 

#19 (w 19
1  + w 25

1 ) · w 38
4  / ( N – Y ) = 0.458410 1 3 1 1 

#21 (w 21
1  + w 27

1 ) · w 38
4  / ( N – Y ) = 0.311064 1 3 1 3 

#28 (w 28
1  + w 31

1 ) · w 38
4  / ( N – Y ) = 0.163718 2 1 1 1 

#29 (w 29
1  + w 32

1 ) · w 38
4  / ( N – Y ) = 0.147346 2 1 1 2 

#37 (w 37
1  + w 40

1 ) · w 38
4  / ( N – Y ) = 0.556640 2 2 1 1 

#55 (w 55
1  + w 61

1 ) · w 38
4  / ( N – Y ) = 0.343807 3 1 1 1 

#57 (w 57
1  + w 63

1 ) · w 38
4  / ( N – Y ) = 0.130974 3 1 1 3 

#73 (w 73
1  + w 79

1 ) · w 38
4  / ( N – Y ) = 1.588062 3 3 1 1 

#75 (w 75
1  + w 81

1 ) · w 38
4  / ( N – Y ) = 2.292048 3 3 1 3 

 w 38
4  = 7.203579     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
5  = w 1

4  + 0.442038 = 18.817866 1 1 1 1 

#2 w 2
5  = w 2

4  + 0.098231 = 2.349950 1 1 1 2 

#3 w 3
5  = w 3

4  + 0.098231 = 3.318476 1 1 1 3 

#4 w 4
5  = w 4

4  = 4.339720 1 1 2 1 

#5 w 5
5  = w 5

4  = 4.307419 1 1 2 2 

#7 w 7
5  = w 7

4  = 6.547697 1 1 3 1 

#9 w 9
5  = w 9

4  = 3.357288 1 1 3 3 

#10 w 10
5  = w 10

4  + 0.343807 = 7.842079 1 2 1 1 

#11 w 11
5  = w 11

4  + 0.229205 = 7.661989 1 2 1 2 

#13 w 13
5  = w 13

4  = 15.012914 1 2 2 1 

#19 w 19
5  = w 19

4  + 0.458410 = 19.489424 1 3 1 1 

#21 w 21
5  = w 21

4  + 0.311064 = 2.631178 1 3 1 3 

#25 w 25
5  = w 25

4  = 11.829774 1 3 3 1 

#27 w 27
5  = w 27

4  = 19.835570 1 3 3 3 

#28 w 28
5  = w 28

4  + 0.163718 = 8.528492 2 1 1 1 

#29 w 29
5  = w 29

4  + 0.147346 = 6.412235 2 1 1 2 

#31 w 31
5  = w 31

4  = 2.231997 2 1 2 1 

#37 w 37
5  = w 37

4  + 0.556640 = 11.876551 2 2 1 1 

#40 w 40
5  = w 40

4  = 23.668904 2 2 2 1 

#55 w 55
5  = w 55

4  + 0.343807 = 11.830596 3 1 1 1 

#57 w 57
5  = w 57

4  + 0.130974 = 3.336428 3 1 1 3 

#61 w 61
5  = w 61

4  = 10.944434 3 1 3 1 

#63 w 63
5  = w 63

4  = 6.056291 3 1 3 3 

#73 w 73
5  = w 73

4  + 1.588062 = 14.966138 3 3 1 1 

#75 w 75
5  = w 75

4  + 2.292048 = 16.699207 3 3 1 3 

#79 w 79
5  = w 79

4  = 86.442953 3 3 3 1 

#81 w 81
5  = w 81

4  = 129.664430 3 3 3 3 
 460.000000     
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Step 6 
 

We now apply proportional completion to voting pattern #40. In voting 
pattern #40, the voters are indifferent between the alternatives in {a, b, c, e}. 
At stage 1, Y : = w 40

1  + w 41
1  = 36 voters were indifferent between all the 

alternatives in {a, b, c, e}. The following N – Y = 424 voters were not 
indifferent between all the alternatives in {a, b, c, e}: 
 

number of voters b c e 
w 1

1  + w 2
1  + w 3

1  = 22 1 1 1 

w 4
1  + w 5

1  = 8 1 1 2 

w 7
1  + w 9

1  = 9 1 1 3 

w 10
1  + w 11

1  = 14 1 2 1 

w 13
1  + w 14

1  = 21 1 2 2 

w 19
1  + w 21

1  = 20 1 3 1 

w 25
1  + w 27

1  = 27 1 3 3 

w 28
1  + w 29

1  = 14 2 1 1 

w 31
1  + w 32

1  = 5 2 1 2 

w 37
1  + w 38

1  = 18 2 2 1 

w 55
1  + w 57

1  = 14 3 1 1 

w 61
1  + w 63

1  = 15 3 1 3 

w 73
1  + w 75

1  = 27 3 3 1 

w 79
1  + w 81

1  = 210 3 3 3 
N – Y = 424    
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Therefore, the w 40
5  = 23.668904 voters with voting pattern #40 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 (w 1
1  + w 2

1  + w 3
1 ) · w 40

5  / ( N – Y ) = 1.228103 1 1 1 1 

#4 (w 4
1  + w 5

1 ) · w 40
5  / ( N – Y ) = 0.446583 1 1 2 1 

#7 (w 7
1  + w 9

1 ) · w 40
5  / ( N – Y ) = 0.502406 1 1 3 1 

#10 (w 10
1  + w 11

1 ) · w 40
5  / ( N – Y ) = 0.781520 1 2 1 1 

#13 (w 13
1  + w 14

1 ) · w 40
5  / ( N – Y ) = 1.172281 1 2 2 1 

#19 (w 19
1  + w 21

1 ) · w 40
5  / ( N – Y ) = 1.116458 1 3 1 1 

#25 (w 25
1  + w 27

1 ) · w 40
5  / ( N – Y ) = 1.507218 1 3 3 1 

#28 (w 28
1  + w 29

1 ) · w 40
5  / ( N – Y ) = 0.781520 2 1 1 1 

#31 (w 31
1  + w 32

1 ) · w 40
5  / ( N – Y ) = 0.279114 2 1 2 1 

#37 (w 37
1  + w 38

1 ) · w 40
5  / ( N – Y ) = 1.004812 2 2 1 1 

#55 (w 55
1  + w 57

1 ) · w 40
5  / ( N – Y ) = 0.781520 3 1 1 1 

#61 (w 61
1  + w 63

1 ) · w 40
5  / ( N – Y ) = 0.837343 3 1 3 1 

#73 (w 73
1  + w 75

1 ) · w 40
5  / ( N – Y ) = 1.507218 3 3 1 1 

#79 (w 79
1  + w 81

1 ) · w 40
5  / ( N – Y ) = 11.722806 3 3 3 1 

 w 40
5  = 23.668904     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
6  = w 1

5  + 1.228103 = 20.045969 1 1 1 1 

#2 w 2
6  = w 2

5  = 2.349950 1 1 1 2 

#3 w 3
6  = w 3

5  = 3.318476 1 1 1 3 

#4 w 4
6  = w 4

5  + 0.446583 = 4.786304 1 1 2 1 

#5 w 5
6  = w 5

5  = 4.307419 1 1 2 2 

#7 w 7
6  = w 7

5  + 0.502406 = 7.050103 1 1 3 1 

#9 w 9
6  = w 9

5  = 3.357288 1 1 3 3 

#10 w 10
6  = w 10

5  + 0.781520 = 8.623599 1 2 1 1 

#11 w 11
6  = w 11

5  = 7.661989 1 2 1 2 

#13 w 13
6  = w 13

5  + 1.172281 = 16.185195 1 2 2 1 

#19 w 19
6  = w 19

5  + 1.116458 = 20.605882 1 3 1 1 

#21 w 21
6  = w 21

5  = 2.631178 1 3 1 3 

#25 w 25
6  = w 25

5  + 1.507218 = 13.336992 1 3 3 1 

#27 w 27
6  = w 27

5  = 19.835570 1 3 3 3 

#28 w 28
6  = w 28

5  + 0.781520 = 9.310012 2 1 1 1 

#29 w 29
6  = w 29

5  = 6.412235 2 1 1 2 

#31 w 31
6  = w 31

5  + 0.279114 = 2.511112 2 1 2 1 

#37 w 37
6  = w 37

5  + 1.004812 = 12.881363 2 2 1 1 

#55 w 55
6  = w 55

5  + 0.781520 = 12.612116 3 1 1 1 

#57 w 57
6  = w 57

5  = 3.336428 3 1 1 3 

#61 w 61
6  = w 61

5  + 0.837343 = 11.781778 3 1 3 1 

#63 w 63
6  = w 63

5  = 6.056291 3 1 3 3 

#73 w 73
6  = w 73

5  + 1.507218 = 16.473356 3 3 1 1 

#75 w 75
6  = w 75

5  = 16.699207 3 3 1 3 

#79 w 79
6  = w 79

5  + 11.722806 = 98.165759 3 3 3 1 

#81 w 81
6  = w 81

5  = 129.664430 3 3 3 3 

 460.000000     
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Step 7 
 

We now apply proportional completion to voting pattern #5. In voting 
pattern #5, the voters are indifferent between the alternatives in {a, e, j}. At 
stage 1, Y : = w 5

1  + w 14
1  + w 32

1  + w 41
1  = 27 voters were indifferent between 

all the alternatives in {a, e, j}. The following N – Y = 433 voters were not 
indifferent between all the alternatives in {a, e, j}: 

 

number of voters e j 
w 1

1  + w 10
1  + w 19

1  + w 28
1  + w 37

1  + w 55
1  + w 73

1  = 85 1 1 

w 2
1  + w 11

1  + w 29
1  + w 38

1  = 22 1 2 

w 3
1  + w 21

1  + w 57
1  + w 75

1  = 22 1 3 

w 4
1  + w 13

1  + w 31
1  + w 40

1  = 43 2 1 

w 7
1  + w 25

1  + w 61
1  + w 79

1  = 110 3 1 

w 9
1  + w 27

1  + w 63
1  + w 81

1  = 151 3 3 
N – Y = 433   

 
Therefore, the w 5

6  = 4.307419 voters with voting pattern #5 are replaced 
by the following voters: 

 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 10
1  + w 19

1  + w 28
1  + w 37

1  + w 55
1  + w 73

1 ) 

· w 5
6  / ( N – Y ) = 0.845567 

1 1 1 1 

#2 (w 2
1  + w 11

1  + w 29
1  + w 38

1 ) · w 5
6  / ( N – Y ) = 0.218853 1 1 1 2 

#3 (w 3
1  + w 21

1  + w 57
1  + w 75

1 ) · w 5
6  / ( N – Y ) = 0.218853 1 1 1 3 

#4 (w 4
1  + w 13

1  + w 31
1  + w 40

1 ) · w 5
6  / ( N – Y ) = 0.427758 1 1 2 1 

#7 (w 7
1  + w 25

1  + w 61
1  + w 79

1 ) · w 5
6  / ( N – Y ) = 1.094264 1 1 3 1 

#9 (w 9
1  + w 27

1  + w 63
1  + w 81

1 ) · w 5
6  / ( N – Y ) = 1.502125 1 1 3 3 

 w 5
6  = 4.307419     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
7  = w 1

6  + 0.845567 = 20.891537 1 1 1 1 

#2 w 2
7  = w 2

6  + 0.218853 = 2.568802 1 1 1 2 

#3 w 3
7  = w 3

6  + 0.218853 = 3.537329 1 1 1 3 

#4 w 4
7  = w 4

6  + 0.427758 = 5.214061 1 1 2 1 

#7 w 7
7  = w 7

6  + 1.094264 = 8.144367 1 1 3 1 

#9 w 9
7  = w 9

6  + 1.502125 = 4.859413 1 1 3 3 

#10 w 10
7  = w 10

6  = 8.623599 1 2 1 1 

#11 w 11
7  = w 11

6  = 7.661989 1 2 1 2 

#13 w 13
7  = w 13

6  = 16.185195 1 2 2 1 

#19 w 19
7  = w 19

6  = 20.605882 1 3 1 1 

#21 w 21
7  = w 21

6  = 2.631178 1 3 1 3 

#25 w 25
7  = w 25

6  = 13.336992 1 3 3 1 

#27 w 27
7  = w 27

6  = 19.835570 1 3 3 3 

#28 w 28
7  = w 28

6  = 9.310012 2 1 1 1 

#29 w 29
7  = w 29

6  = 6.412235 2 1 1 2 

#31 w 31
7  = w 31

6  = 2.511112 2 1 2 1 

#37 w 37
7  = w 37

6  = 12.881363 2 2 1 1 

#55 w 55
7  = w 55

6  = 12.612116 3 1 1 1 

#57 w 57
7  = w 57

6  = 3.336428 3 1 1 3 

#61 w 61
7  = w 61

6  = 11.781778 3 1 3 1 

#63 w 63
7  = w 63

6  = 6.056291 3 1 3 3 

#73 w 73
7  = w 73

6  = 16.473356 3 3 1 1 

#75 w 75
7  = w 75

6  = 16.699207 3 3 1 3 

#79 w 79
7  = w 79

6  = 98.165759 3 3 3 1 

#81 w 81
7  = w 81

6  = 129.664430 3 3 3 3 
 460.000000     
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Step 8 
 

We now apply proportional completion to voting pattern #11. In voting 
pattern #11, the voters are indifferent between the alternatives in {a, c, j}. At 
stage 1, Y : = w 11

1  + w 14
1  + w 38

1  + w 41
1  = 34 voters were indifferent between 

all the alternatives in {a, c, j}. The following N – Y = 426 voters were not 
indifferent between all the alternatives in {a, c, j}: 
 

number of voters c j 
w 1

1  + w 4
1  + w 7

1  + w 28
1  + w 31

1  + w 55
1  + w 61

1  = 58 1 1 

w 2
1  + w 5

1  + w 29
1  + w 32

1  = 15 1 2 

w 3
1  + w 9

1  + w 57
1  + w 63

1  = 14 1 3 

w 10
1  + w 13

1  + w 37
1  + w 40

1  = 55 2 1 

w 19
1  + w 25

1  + w 73
1  + w 79

1  = 125 3 1 

w 21
1  + w 27

1  + w 75
1  + w 81

1  = 159 3 3 
N – Y = 426   

 
Therefore, the w 11

7  = 7.661989 voters with voting pattern #11 are 
replaced by the following voters: 

 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 4
1  + w 7

1  + w 28
1  + w 31

1  + w 55
1  + w 61

1 ) 

· w 11
7  / ( N – Y ) = 1.043182 

1 1 1 1 

#2 (w 2
1  + w 5

1  + w 29
1  + w 32

1 ) · w 11
7  / ( N – Y ) = 0.269788 1 1 1 2 

#3 (w 3
1  + w 9

1  + w 57
1  + w 63

1 ) · w 11
7  / ( N – Y ) = 0.251802 1 1 1 3 

#10 (w 10
1  + w 13

1  + w 37
1  + w 40

1 ) · w 11
7  / ( N – Y ) = 0.989224 1 2 1 1 

#19 (w 19
1  + w 25

1  + w 73
1  + w 79

1 ) · w 11
7  / ( N – Y ) = 2.248236 1 3 1 1 

#21 (w 21
1  + w 27

1  + w 75
1  + w 81

1 ) · w 11
7  / ( N – Y ) = 2.859756 1 3 1 3 

 w 11
7  = 7.661989     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
8  = w 1

7  + 1.043182 = 21.934718 1 1 1 1 

#2 w 2
8  = w 2

7  + 0.269788 = 2.838591 1 1 1 2 

#3 w 3
8  = w 3

7  + 0.251802 = 3.789131 1 1 1 3 

#4 w 4
8  = w 4

7  = 5.214061 1 1 2 1 

#7 w 7
8  = w 7

7  = 8.144367 1 1 3 1 

#9 w 9
8  = w 9

7  = 4.859413 1 1 3 3 

#10 w 10
8  = w 10

7  + 0.989224 = 9.612823 1 2 1 1 

#13 w 13
8  = w 13

7  = 16.185199 1 2 2 1 

#19 w 19
8  = w 19

7  + 2.248236 = 22.854118 1 3 1 1 

#21 w 21
8  = w 21

7 + 2.859756 = 5.490934 1 3 1 3 

#25 w 25
8  = w 25

7  = 13.336992 1 3 3 1 

#27 w 27
8  = w 27

7  = 19.835570 1 3 3 3 

#28 w 28
8  = w 28

7 = 9.310012 2 1 1 1 

#29 w 29
8  = w 29

7  = 6.412235 2 1 1 2 

#31 w 31
8  = w 31

7  = 2.511112 2 1 2 1 

#37 w 37
8  = w 37

7  = 12.881363 2 2 1 1 

#55 w 55
8  = w 55

7  = 12.612116 3 1 1 1 

#57 w 57
8  = w 57

7  = 3.336428 3 1 1 3 

#61 w 61
8  = w 61

7  = 11.781778 3 1 3 1 

#63 w 63
8  = w 63

7  = 6.056291 3 1 3 3 

#73 w 73
8  = w 73

7  = 16.473356 3 3 1 1 

#75 w 75
8  = w 75

7  = 16.699207 3 3 1 3 

#79 w 79
8  = w 79

7  = 98.165759 3 3 3 1 

#81 w 81
8  = w 81

7  = 129.664430 3 3 3 3 

 460.000000     
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Step 9 
 

We now apply proportional completion to voting pattern #13. In voting 
pattern #13, the voters are indifferent between the alternatives in {a, c, e}. 
At stage 1, Y : = w 13

1  + w 14
1  + w 40

1  + w 41
1  = 57 voters were indifferent 

between all the alternatives in {a, c, e}. The following N – Y = 403 voters 
were not indifferent between all the alternatives in {a, c, e}: 
 

number of voters c e 
w 1

1  + w 2
1  + w 3

1  + w 28
1  + w 29

1  + w 55
1  + w 57

1  = 50 1 1 

w 4
1  + w 5

1  + w 31
1  + w 32

1  = 13 1 2 

w 7
1  + w 9

1  + w 61
1  + w 63

1  = 24 1 3 

w 10
1  + w 11

1  + w 37
1  + w 38

1  = 32 2 1 

w 19
1  + w 21

1  + w 73
1  + w 75

1  = 47 3 1 

w 25
1  + w 27

1  + w 79
1  + w 81

1  = 237 3 3 
N – Y = 403   

 

Therefore, the w 13
8  = 16.185195 voters with voting pattern #13 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 2
1  + w 3

1  + w 28
1  + w 29

1  + w 55
1  + w 57

1 ) 

· w 13
8  / ( N – Y ) = 2.008089 

1 1 1 1 

#4 (w 4
1  + w 5

1  + w 31
1  + w 32

1 ) · w 13
8  / ( N – Y ) = 0.522103 1 1 2 1 

#7 (w 7
1  + w 9

1  + w 61
1  + w 63

1 ) · w 13
8  / ( N – Y ) = 0.963883 1 1 3 1 

#10 (w 10
1  + w 11

1  + w 37
1  + w 38

1 ) · w 13
8  / ( N – Y ) = 1.285177 1 2 1 1 

#19 (w 19
1  + w 21

1  + w 73
1  + w 75

1 ) · w 13
8  / ( N – Y ) = 1.887603 1 3 1 1 

#25 (w 25
1  + w 27

1  + w 79
1  + w 81

1 ) · w 13
8  / ( N – Y ) = 9.518340 1 3 3 1 

 w 13
8  = 16.185195     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
9  = w 1

8  + 2.008089 = 23.942807 1 1 1 1 

#2 w 2
9  = w 2

8  = 2.838591 1 1 1 2 

#3 w 3
9  = w 3

8  = 3.789131 1 1 1 3 

#4 w 4
9  = w 4

8  + 0.522103 = 5.736164 1 1 2 1 

#7 w 7
9  = w 7

8  + 0.963883 = 9.108249 1 1 3 1 

#9 w 9
9  = w 9

8  = 4.859413 1 1 3 3 

#10 w 10
9  = w 10

8  + 1.285177 = 10.898000 1 2 1 1 

#19 w 19
9  = w 19

8  + 1.887603 = 24.741722 1 3 1 1 

#21 w 21
9  = w 21

8  = 5.490934 1 3 1 3 

#25 w 25
9  = w 25

8  + 9.518340 = 22.855333 1 3 3 1 

#27 w 27
9  = w 27

8  = 19.835570 1 3 3 3 

#28 w 28
9  = w 28

8  = 9.310012 2 1 1 1 

#29 w 29
9  = w 29

8  = 6.412235 2 1 1 2 

#31 w 31
9  = w 31

8  = 2.511112 2 1 2 1 

#37 w 37
9  = w 37

8  = 12.881363 2 2 1 1 

#55 w 55
9  = w 55

8  = 12.612116 3 1 1 1 

#57 w 57
9  = w 57

8  = 3.336428 3 1 1 3 

#61 w 61
9  = w 61

8  = 11.781778 3 1 3 1 

#63 w 63
9  = w 63

8  = 6.056291 3 1 3 3 

#73 w 73
9  = w 73

8  = 16.473356 3 3 1 1 

#75 w 75
9  = w 75

8  = 16.699207 3 3 1 3 

#79 w 79
9  = w 79

8  = 98.165759 3 3 3 1 

#81 w 81
9  = w 81

8  = 129.664430 3 3 3 3 
 460.000000     
 
 
 
 

  



Markus Schulze, “The Schulze Method of Voting” 

 213 

Step 10 
 

We now apply proportional completion to voting pattern #29. In voting 
pattern #29, the voters are indifferent between the alternatives in {a, b, j}. At 
stage 1, Y : = w 29

1  + w 32
1  + w 38

1  = 29 voters were indifferent between all the 
alternatives in {a, b, j}. The following N – Y = 431 voters were not 
indifferent between all the alternatives in {a, b, j}: 
 

number of voters b j 
w 1

1  + w 4
1  + w 7

1  + w 10
1  + w 13

1  + w 19
1  + w 25

1  = 76 1 1 

w 2
1  + w 5

1  + w 11
1  + w 14

1  = 20 1 2 

w 3
1  + w 9

1  + w 21
1  + w 27

1  = 25 1 3 

w 28
1  + w 31

1  + w 37
1  + w 40

1  = 44 2 1 

w 55
1  + w 61

1  + w 73
1  + w 79

1  = 118 3 1 

w 57
1  + w 63

1  + w 75
1  + w 81

1  = 148 3 3 
N – Y = 431   

 
Therefore, the w 29

9  = 6.412235 voters with voting pattern #29 are 
replaced by the following voters: 

 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 4
1  + w 7

1  + w 10
1  + w 13

1  + w 19
1  + w 25

1 ) 

· w 29
9  / ( N – Y ) = 1.130696 

1 1 1 1 

#2 (w 2
1  + w 5

1  + w 11
1  + w 14

1 ) · w 29
9  / ( N – Y ) = 0.297552 1 1 1 2 

#3 (w 3
1  + w 9

1  + w 21
1  + w 27

1 ) · w 29
9  / ( N – Y ) = 0.371939 1 1 1 3 

#28 (w 28
1  + w 31

1  + w 37
1  + w 40

1 ) · w 29
9  / ( N – Y ) = 0.654613 2 1 1 1 

#55 (w 55
1  + w 61

1  + w 73
1  + w 79

1 ) · w 29
9  / ( N – Y ) = 1.755554 3 1 1 1 

#57 (w 57
1  + w 63

1  + w 75
1  + w 81

1 ) · w 29
9  / ( N – Y ) = 2.201881 3 1 1 3 

 w 29
9  = 6.412235     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
10  = w 1

9  + 1.130696 = 25.073503 1 1 1 1 

#2 w 2
10  = w 2

9  + 0.297552 = 3.136142 1 1 1 2 

#3 w 3
10  = w 3

9  + 0.371939 = 4.161070 1 1 1 3 

#4 w 4
10  = w 4

9  = 5.736164 1 1 2 1 

#7 w 7
10  = w 7

9  = 9.108249 1 1 3 1 

#9 w 9
10  = w 9

9  = 4.859413 1 1 3 3 

#10 w 10
10  = w 10

9  = 10.898000 1 2 1 1 

#19 w 19
10  = w 19

9  = 24.741722 1 3 1 1 

#21 w 21
10  = w 21

9  = 5.490934 1 3 1 3 

#25 w 25
10  = w 25

9  = 22.855333 1 3 3 1 

#27 w 27
10  = w 27

9  = 19.835570 1 3 3 3 

#28 w 28
10  = w 28

9  + 0.654613 = 9.964626 2 1 1 1 

#31 w 31
10  = w 31

9  = 2.511112 2 1 2 1 

#37 w 37
10  = w 37

9  = 12.881363 2 2 1 1 

#55 w 55
10  = w 55

9  + 1.755554 = 14.367670 3 1 1 1 

#57 w 57
10  = w 57

9  + 2.201881 = 5.538309 3 1 1 3 

#61 w 61
10  = w 61

9  = 11.781778 3 1 3 1 

#63 w 63
10  = w 63

9  = 6.056291 3 1 3 3 

#73 w 73
10  = w 73

9  = 16.473356 3 3 1 1 

#75 w 75
10  = w 75

9  = 16.699207 3 3 1 3 

#79 w 79
10  = w 79

9  = 98.165759 3 3 3 1 

#81 w 81
10  = w 81

9  = 129.664430 3 3 3 3 

 460.000000     
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Step 11 
 
 

We now apply proportional completion to voting pattern #31. In voting 
pattern #31, the voters are indifferent between the alternatives in {a, b, e}. 
At stage 1, Y : = w 31

1  + w 32
1  + w 40

1  + w 41
1  = 41 voters were indifferent 

between all the alternatives in {a, b, e}. The following N – Y = 419 voters 
were not indifferent between all the alternatives in {a, b, e}: 
 

number of voters b e 
w 1

1  + w 2
1  + w 3

1  + w 10
1  + w 11

1  + w 19
1  + w 21

1  = 56 1 1 

w 4
1  + w 5

1  + w 13
1  + w 14

1  = 29 1 2 

w 7
1  + w 9

1  + w 25
1  + w 27

1  = 36 1 3 

w 28
1  + w 29

1  + w 37
1  + w 38

1  = 32 2 1 

w 55
1  + w 57

1  + w 73
1  + w 75

1  = 41 3 1 

w 61
1  + w 63

1  + w 79
1  + w 81

1  = 225 3 3 
N – Y = 419   

 

Therefore, the w 31
10  = 2.511112 voters with voting pattern #31 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 2
1  + w 3

1  + w 10
1  + w 11

1  + w 19
1  + w 21

1 ) 

· w 31
10  / ( N – Y ) = 0.335614 

1 1 1 1 

#4 (w 4
1  + w 5

1  + w 13
1  + w 14

1 ) · w 31
10  / ( N – Y ) = 0.173800 1 1 2 1 

#7 (w 7
1  + w 9

1  + w 25
1  + w 27

1 ) · w 31
10  / ( N – Y ) = 0.215752 1 1 3 1 

#28 (w 28
1  + w 29

1  + w 37
1  + w 38

1 ) · w 31
10  / ( N – Y ) = 0.191779 2 1 1 1 

#55 (w 55
1  + w 57

1  + w 73
1  + w 75

1 ) · w 31
10  / ( N – Y ) = 0.245717 3 1 1 1 

#61 (w 61
1  + w 63

1  + w 79
1  + w 81

1 ) · w 31
10  / ( N – Y ) = 1.348449 3 1 3 1 

 w 31
10  = 2.511112     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
11  = w 1

10  + 0.335614 = 25.409117 1 1 1 1 

#2 w 2
11  = w 2

10  = 3.136142 1 1 1 2 

#3 w 3
11  = w 3

10  = 4.161070 1 1 1 3 

#4 w 4
11  = w 4

10  + 0.173800 = 5.909964 1 1 2 1 

#7 w 7
11  = w 7

10  + 0.215752 = 9.324001 1 1 3 1 

#9 w 9
11  = w 9

10  = 4.859413 1 1 3 3 

#10 w 10
11  = w 10

10  = 10.898000 1 2 1 1 

#19 w 19
11  = w 19

10  = 24.741722 1 3 1 1 

#21 w 21
11  = w 21

10  = 5.490934 1 3 1 3 

#25 w 25
11  = w 25

10  = 22.855333 1 3 3 1 

#27 w 27
11  = w 27

10  = 19.835570 1 3 3 3 

#28 w 28
11 = w 28

10  + 0.191779 = 10.156405 2 1 1 1 

#37 w 37
11  = w 37

10  = 12.881363 2 2 1 1 

#55 w 55
11  = w 55

10  + 0.245717 = 14.613388 3 1 1 1 

#57 w 57
11  = w 57

10  = 5.538309 3 1 1 3 

#61 w 61
11  = w 61

10  + 1.348449 = 13.130227 3 1 3 1 

#63 w 63
11  = w 63

10  = 6.056291 3 1 3 3 

#73 w 73
11  = w 73

10  = 16.473356 3 3 1 1 

#75 w 75
11  = w 75

10  = 16.699207 3 3 1 3 

#79 w 79
11  = w 79

10  = 98.165759 3 3 3 1 

#81 w 81
11  = w 81

10  = 129.664430 3 3 3 3 

 460.000000     
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Step 12 
 
 

We now apply proportional completion to voting pattern #37. In voting 
pattern #37, the voters are indifferent between the alternatives in {a, b, c}. 
At stage 1, Y : = w 37

1  + w 38
1  + w 40

1  + w 41
1  = 54 voters were indifferent 

between all the alternatives in {a, b, c}. The following N – Y = 406 voters 
were not indifferent between all the alternatives in {a, b, c}: 
 

number of voters b c 
w 1

1  + w 2
1  + w 3

1  + w 4
1  + w 5

1  + w 7
1  + w 9

1  = 39 1 1 

w 10
1  + w 11

1  + w 13
1  + w 14

1  = 35 1 2 

w 19
1  + w 21

1  + w 25
1  + w 27

1  = 47 1 3 

w 28
1  + w 29

1  + w 31
1  + w 32

1  = 19 2 1 

w 55
1  + w 57

1  + w 61
1  + w 63

1  = 29 3 1 

w 73
1  + w 75

1  + w 79
1  + w 81

1  = 237 3 3 
N – Y = 406   

 

Therefore, the w 37
11  = 12.881363 voters with voting pattern #37 are 

replaced by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 
(w 1

1  + w 2
1  + w 3

1  + w 4
1  + w 5

1  + w 7
1  + w 9

1 ) 

· w 37
11  / ( N – Y ) = 1.237372 

1 1 1 1 

#10 (w 10
1  + w 11

1  + w 13
1  + w 14

1 ) · w 37
11  / ( N – Y ) = 1.110462 1 2 1 1 

#19 (w 19
1  + w 21

1  + w 25
1  + w 27

1 ) · w 37
11  / ( N – Y ) = 1.491192 1 3 1 1 

#28 (w 28
1  + w 29

1  + w 31
1  + w 32

1 ) · w 37
11  / ( N – Y ) = 0.602822 2 1 1 1 

#55 (w 55
1  + w 57

1  + w 61
1  + w 63

1 ) · w 37
11  / ( N – Y ) = 0.920097 3 1 1 1 

#73 (w 73
1  + w 75

1  + w 79
1  + w 81

1 ) · w 37
11  / ( N – Y ) = 7.519416 3 3 1 1 

 w 37
11  = 12.881363     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
12  = w 1

11  + 1.237372 = 26.646489 1 1 1 1 

#2 w 2
12  = w 2

11  = 3.136142 1 1 1 2 

#3 w 3
12  = w 3

11  = 4.161070 1 1 1 3 

#4 w 4
12  = w 4

11  = 5.909964 1 1 2 1 

#7 w 7
12  = w 7

11  = 9.324001 1 1 3 1 

#9 w 9
12  = w 9

11  = 4.859413 1 1 3 3 

#10 w 10
12  = w 10

11  + 1.110462 = 12.008462 1 2 1 1 

#19 w 19
12  = w 19

11  + 1.491192 = 26.232914 1 3 1 1 

#21 w 21
12  = w 21

11  = 5.490934 1 3 1 3 

#25 w 25
12  = w 25

11  = 22.855333 1 3 3 1 

#27 w 27
12  = w 27

11  = 19.835570 1 3 3 3 

#28 w 28
12  = w 28

11  + 0.602822 = 10.759227 2 1 1 1 

#55 w 55
12  = w 55

11  + 0.920097 = 15.533485 3 1 1 1 

#57 w 57
12  = w 57

11  = 5.538309 3 1 1 3 

#61 w 61
12  = w 61

11  = 13.130227 3 1 3 1 

#63 w 63
12  = w 63

11  = 6.056291 3 1 3 3 

#73 w 73
12  = w 73

11  + 7.519416 = 23.992772 3 3 1 1 

#75 w 75
12  = w 75

11  = 16.699207 3 3 1 3 

#79 w 79
12  = w 79

11  = 98.165759 3 3 3 1 

#81 w 81
12  = w 81

11  = 129.664430 3 3 3 3 
 460.000000     
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Step 13 
 

We now apply proportional completion to voting pattern #2. In voting 
pattern #2, the voters are indifferent between the alternatives in {a, j}. At 
stage 1, Y : = w 2

1  + w 5
1  + w 11

1  + w 14
1  + w 29

1  + w 32
1  + w 38

1  + w 41
1  = 49 voters 

were indifferent between all the alternatives in {a, j}. The following N – Y = 
411 voters were not indifferent between all the alternatives in {a, j}: 
 

number of voters j 
w 1

1  + w 4
1  + w 7

1  + w 10
1  + w 13

1  + w 19
1  + w 25

1  + w 28
1  + w 31

1  + 

w 37
1  + w 40

1  + w 55
1  + w 61

1  + w 73
1  + w 79

1  = 238 
1 

w 3
1  + w 9

1  + w 21
1  + w 27

1  + w 57
1  + w 63

1  + w 75
1  + w 81

1  = 173 3 
N – Y = 411  

 

Therefore, the w 2
12  = 3.136142 voters with voting pattern #2 are replaced 

by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 

(w 1
1  + w 4

1  + w 7
1  + w 10

1  + w 13
1  + w 19

1  + w 25
1  + w 28

1  + 

w 31
1  + w 37

1  + w 40
1  + w 55

1  + w 61
1  + w 73

1  + w 79
1 ) 

· w 2
12  / ( N – Y ) = 1.816063 

1 1 1 1 

#3 
(w 3

1  + w 9
1  + w 21

1  + w 27
1  + w 57

1  + w 63
1  + w 75

1  + w 81
1 ) 

· w 2
12  / ( N – Y ) = 1.320079 

1 1 1 3 

 w 2
12  = 3.136142     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
13  = w 1

12  + 1.816063 = 28.462552 1 1 1 1 

#3 w 3
13  = w 3

12  + 1.320079 = 5.481150 1 1 1 3 

#4 w 4
13  = w 4

12  = 5.909964 1 1 2 1 

#7 w 7
13  = w 7

12  = 9.324001 1 1 3 1 

#9 w 9
13  = w 9

12  = 4.859413 1 1 3 3 

#10 w 10
13  = w 10

12  = 12.008462 1 2 1 1 

#19 w 19
13  = w 19

12  = 26.232914 1 3 1 1 

#21 w 21
13  = w 21

12  = 5.490934 1 3 1 3 

#25 w 25
13  = w 25

12  = 22.855333 1 3 3 1 

#27 w 27
13  = w 27

12  = 19.835570 1 3 3 3 

#28 w 28
13  = w 28

12  = 10.759227 2 1 1 1 

#55 w 55
13  = w 55

12  = 15.533485 3 1 1 1 

#57 w 57
13  = w 57

12  = 5.538309 3 1 1 3 

#61 w 61
13  = w 61

12  = 13.130227 3 1 3 1 

#63 w 63
13  = w 63

12  = 6.056291 3 1 3 3 

#73 w 73
13  = w 73

12  = 23.992772 3 3 1 1 

#75 w 75
13  = w 75

12  = 16.699207 3 3 1 3 

#79 w 79
13  = w 79

12  = 98.165759 3 3 3 1 

#81 w 81
13  = w 81

12  = 129.664430 3 3 3 3 

 460.000000     
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Step 14 
 
 

We now apply proportional completion to voting pattern #4. In voting 
pattern #4, the voters are indifferent between the alternatives in {a, e}. At 
stage 1, Y : = w 4

1  + w 5
1  + w 13

1  + w 14
1  + w 31

1  + w 32
1  + w 40

1  + w 41
1  = 70 voters 

were indifferent between all the alternatives in {a, e}. The following N – Y = 
390 voters were not indifferent between all the alternatives in {a, e}: 
 

number of voters e 
w 1

1  + w 2
1  + w 3

1  + w 10
1  + w 11

1  + w 19
1  + w 21

1  + w 28
1  + 

w 29
1  + w 37

1  + w 38
1  + w 55

1  + w 57
1  + w 73

1  + w 75
1  = 129 

1 

w 7
1  + w 9

1  + w 25
1  + w 27

1  + w 61
1  + w 63

1  + w 79
1  + w 81

1  = 261 3 
N – Y = 390  

 

Therefore, the w 4
13  = 5.909964 voters with voting pattern #4 are replaced 

by the following voters: 
 

voting 
pattern number of voters b c e j 

#1 

( w 1
1  + w 2

1  + w 3
1  + w 10

1  + w 11
1  + w 19

1  + w 21
1  +  

w 28
1  + w 29

1  + w 37
1  + w 38

1  + w 55
1  + w 57

1  + w 73
1  + 

w 75
1 ) · w 4

13  / ( N – Y ) = 1.954834 

1 1 1 1 

#7 
(w 7

1  + w 9
1  + w 25

1  + w 27
1  + w 61

1  + w 63
1  + w 79

1  + 

w 81
1 ) · w 4

13  / ( N – Y ) = 3.955130 
1 1 3 1 

 w 4
13  = 5.909964     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
14  = w 1

13  + 1.954834 = 30.417386 1 1 1 1 

#3 w 3
14  = w 3

13  = 5.481150 1 1 1 3 

#7 w 7
14  = w 7

13  + 3.955130 = 13.279131 1 1 3 1 

#9 w 9
14  = w 9

13  = 4.859413 1 1 3 3 

#10 w 10
14  = w 10

13  = 12.008462 1 2 1 1 

#19 w 19
14  = w 19

13  = 26.232914 1 3 1 1 

#21 w 21
14  = w 21

13  = 5.490934 1 3 1 3 

#25 w 25
14  = w 25

13  = 22.855333 1 3 3 1 

#27 w 27
14  = w 27

13  = 19.835570 1 3 3 3 

#28 w 28
14  = w 28

13  = 10.759227 2 1 1 1 

#55 w 55
14  = w 55

13  = 15.533485 3 1 1 1 

#57 w 57
14  = w 57

13  = 5.538309 3 1 1 3 

#61 w 61
14  = w 61

13  = 13.130227 3 1 3 1 

#63 w 63
14  = w 63

13  = 6.056291 3 1 3 3 

#73 w 73
14  = w 73

13  = 23.992772 3 3 1 1 

#75 w 75
14  = w 75

13  = 16.699207 3 3 1 3 

#79 w 79
14  = w 79

13  = 98.165759 3 3 3 1 

#81 w 81
14  = w 81

13  = 129.664430 3 3 3 3 
 460.000000     
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Step 15 
 

We now apply proportional completion to voting pattern #10. In voting 
pattern #10, the voters are indifferent between the alternatives in {a, c}. At 
stage 1, Y : = w 10

1  + w 11
1  + w 13

1  + w 14
1  + w 37

1  + w 38
1  + w 40

1  + w 41
1  = 89 voters 

were indifferent between all the alternatives in {a, c}. The following N – Y = 
371 voters were not indifferent between all the alternatives in {a, c}: 
 

number of voters c 
w 1

1  + w 2
1  + w 3

1  + w 4
1  + w 5

1  + w 7
1  + w 9

1  + w 28
1  + 

w 29
1  + w 31

1  + w 32
1  + w 55

1  + w 57
1  + w 61

1  + w 63
1  = 87 

1 

w 19
1  + w 21

1  + w 25
1  + w 27

1  + w 73
1  + w 75

1  + w 79
1  + w 81

1  = 284 3 
N – Y = 371  

 
Therefore, the w 10

14  = 12.008462 voters with voting pattern #10 are 
replaced by the following voters: 

 

voting 
pattern number of voters b c e j 

#1 

(w 1
1  + w 2

1  + w 3
1  + w 4

1  + w 5
1  + w 7

1  + w 9
1  + w 28

1  + 

w 29
1  + w 31

1  + w 32
1  + w 55

1  + w 57
1  + w 61

1  + w 63
1 ) 

· w 10
14  / ( N – Y ) = 2.816001 

1 1 1 1 

#19 
(w 19

1  + w 21
1  + w 25

1  + w 27
1  + w 73

1  + w 75
1  + w 79

1  + w 81
1 ) 

· w 10
14  / ( N – Y ) = 9.192461 

1 3 1 1 

 w 10
14  = 12.008462     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
15  = w 1

14  + 2.816001 = 33.233387 1 1 1 1 

#3 w 3
15  = w 3

14  = 5.481150 1 1 1 3 

#7 w 7
15  = w 7

14  = 13.279131 1 1 3 1 

#9 w 9
15  = w 9

14  = 4.859413 1 1 3 3 

#19 w 19
15  = w 19

14  + 9.192461 = 35.425375 1 3 1 1 

#21 w 21
15  = w 21

14  = 5.490934 1 3 1 3 

#25 w 25
15  = w 25

14  = 22.855333 1 3 3 1 

#27 w 27
15  = w 27

14  = 19.835570 1 3 3 3 

#28 w 28
15  = w 28

14  = 10.759227 2 1 1 1 

#55 w 55
15  = w 55

14  = 15.533485 3 1 1 1 

#57 w 57
15  = w 57

14  = 5.538309 3 1 1 3 

#61 w 61
15  = w 61

14  = 13.130227 3 1 3 1 

#63 w 63
15  = w 63

14  = 6.056291 3 1 3 3 

#73 w 73
15  = w 73

14  = 23.992772 3 3 1 1 

#75 w 75
15  = w 75

14  = 16.699207 3 3 1 3 

#79 w 79
15  = w 79

14  = 98.165759 3 3 3 1 

#81 w 81
15  = w 81

14  = 129.664430 3 3 3 3 

 460.000000     
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Step 16 
 

We now apply proportional completion to voting pattern #28. In voting 
pattern #28, the voters are indifferent between the alternatives in {a, b}. At 
stage 1, Y : = w 28

1  + w 29
1  + w 31

1  + w 32
1  + w 37

1  + w 38
1  + w 40

1  + w 41
1  = 73 voters 

were indifferent between all the alternatives in {a, b}. The following N – Y = 
387 voters were not indifferent between all the alternatives in {a, b}: 
 

number of voters b 
w 1

1  + w 2
1  + w 3

1  + w 4
1  + w 5

1  + w 7
1  + w 9

1  + w 10
1  + 

w 11
1  + w 13

1  + w 14
1  + w 19

1  + w 21
1  + w 25

1  + w 27
1  = 121 

1 

w 55
1  + w 57

1  + w 61
1  + w 63

1  + w 73
1  + w 75

1  + w 79
1  + w 81

1  = 266 3 
N – Y = 387  

 
Therefore, the w 28

15  = 10.759227 voters with voting pattern #28 are 
replaced by the following voters: 

 

voting 
pattern number of voters b c e j 

#1 

(w 1
1  + w 2

1  + w 3
1  + w 4

1  + w 5
1  + w 7

1  + w 9
1  + w 10

1  + 

w 11
1  + w 13

1  + w 14
1  + w 19

1  + w 21
1  + w 25

1  + w 27
1 ) 

· w 28
15  / ( N – Y ) = 3.363996 

1 1 1 1 

#55 
(w 55

1  + w 57
1  + w 61

1  + w 63
1  + w 73

1  + w 75
1  + w 79

1  + w 81
1 ) 

· w 28
15  / ( N – Y ) = 7.395231 

3 1 1 1 

 w 28
15  = 10.759227     
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Therefore, we get: 
 
 
voting 
pattern number of voters b c e j 

#1 w 1
16  = w 1

15  + 3.363996 = 36.597383 1 1 1 1 

#3 w 3
16  = w 3

15  = 5.481150 1 1 1 3 

#7 w 7
16  = w 7

15  = 13.279131 1 1 3 1 

#9 w 9
16  = w 9

15  = 4.859413 1 1 3 3 

#19 w 19
16  = w 19

15  = 35.425375 1 3 1 1 

#21 w 21
16  = w 21

15  = 5.490934 1 3 1 3 

#25 w 25
16  = w 25

15  = 22.855333 1 3 3 1 

#27 w 27
16  = w 27

15  = 19.835570 1 3 3 3 

#55 w 55
16  = w 55

15  + 7.395231 = 22.928716 3 1 1 1 

#57 w 57
16  = w 57

15  = 5.538309 3 1 1 3 

#61 w 61
16  = w 61

15  = 13.130227 3 1 3 1 

#63 w 63
16  = w 63

15  = 6.056291 3 1 3 3 

#73 w 73
16  = w 73

15  = 23.992772 3 3 1 1 

#75 w 75
16  = w 75

15  = 16.699207 3 3 1 3 

#79 w 79
16  = w 79

15  = 98.165759 3 3 3 1 

#81 w 81
16  = w 81

15  = 129.664430 3 3 3 3 
 460.000000     
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9.2.2. Links between Sets of Winners 

In section 9.2.2, we show how the strengths of the links are calculated. 
 
N[{a1,...,aM};b] is the strength of the link from the set {a1,...,aM} to the set 

{a1,...,a(M–1),b}. N[{a1,...,aM};b] is defined as follows: 

N[{a1,...,aM};b] ∈  is the largest value such that there is a t ∈ (NW×M) 
such that: 

(9.1.2.1) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: tij ≥ 0. 

(9.1.2.2) ∀ i ∈ {1,...,NW}: ∑
=

M

j
ijt

1

≤ ρ(i). 

(9.1.2.3) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: b i aj ⇒ tij = 0. 

(9.1.2.4) ∀ j ∈ {1,...,M}: ∑
=

WN

i
ijt

1

≥ N[{a1,...,aM};b]. 
 

Suppose N*[{a1,...,aM};b] ∈  is the largest value such that there is a            
t* ∈ (NW×M) such that: 

(9.2.2.1) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: t*ij ≥ 0. 

(9.2.2.2) ∀ i ∈ {1,...,NW}: ∑
=

M

j
ij*t

1
≤ ρ(i). 

(9.2.2.3) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: b i aj ⇒ t*ij = 0. 

(9.2.2.4) ∑∑
= =

WN

i

M

j
ij*t

1 1

≥ M · N*[{a1,...,aM};b]. 

As (9.2.2.4) is weaker than (9.1.2.4), we get: 
 

N[{a1,...,aM};b] ≤ N*[{a1,...,aM};b]. 
 

Suppose t* ∈ (NW×M)  is a solution of (9.2.2.1) – (9.2.2.4). Then we define: 
 

N^[{a1,...,aM};b] : = min {∑
=

WN

i
ij*t

1

| 1 ≤ j ≤ M }. 

So we get: 
 

N^[{a1,...,aM};b] ≤ N[{a1,...,aM};b] ≤ N*[{a1,...,aM};b]. 
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Compared to (9.1.2.1) – (9.1.2.4), (9.2.2.1) – (9.2.2.4) has the advantage 
that it describes a trivial max-flow problem. A max-flow problem can be 
solved significantly more easily than a general linear program. Therefore, we 
solve (9.1.2.1) – (9.1.2.4) by solving a series of max-flow problems as follows: 

 
 

Suppose W is the number of voters who strictly prefer candidate b     
to every candidate of the set {a1,...,aM}. Then we know that 
N[{a1,...,aM};b] cannot be larger than ( N – W ) / M. 

 
Therefore, we start with 

 
   r(0) : = ( N – W ) / M. 
 
   s(0) : = 0. 
 

For z = 1, 2, 3, ..., we solve the following linear programs LP(z): 
 
Find the maximum r(z) ∈  such that there is a t(z) ∈ (NW×M) such that 
 

  (9.2.2.5) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: t )( z
ij  ≥ 0. 

  (9.2.2.6) ∀ i ∈ {1,...,NW}: ∑
=

M

j

z
ijt

1

)( ≤ ρ(i). 

  (9.2.2.7) ∀ i ∈ {1,...,NW} ∀ j ∈ {1,...,M}: b i aj ⇒ t )( z
ij  = 0. 

  (9.2.2.8) ∑∑
= =

WN

i

M

j

z
ijt

1 1

)( ≥ M · r(z). 
   

  (9.2.2.9)    ∀ j ∈ {1,...,M}: ∑
=

WN

i

z
ijt

1

)( ≤ r(z–1). 

 
Furthermore, we define for z = 1, 2, 3, ... : 
 

(9.2.2.10) s(z) : = max { s(z–1), min { ∑
=

WN

i

z
ijt

1

)(  | 1 ≤ j ≤ M } }. 

 
When we solve (9.2.2.5) – (9.2.2.9), then we get a decreasing 

sequence r(0), r(1), r(2), r(3), ... and an increasing sequence s(0), s(1), s(2), 
s(3), ... These two sequences converge to the same limit. This limit is 
the solution of (9.1.2.1) – (9.1.2.4). 
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Now, we use this algorithm to calculate the strength of the link of the 
alternatives b,c,e,j against candidate a in instance A53. After proportional 
completion, the voter profile looks as follows: 

 
  b c e j 
voter01 36.597383 1 1 1 1 
voter02 5.481150 1 1 1 3 
voter03 13.279131 1 1 3 1 
voter04 4.859413 1 1 3 3 
voter05 35.425375 1 3 1 1 
voter06 5.490934 1 3 1 3 
voter07 22.855333 1 3 3 1 
voter08 19.835570 1 3 3 3 
voter09 22.928716 3 1 1 1 
voter10 5.538309 3 1 1 3 
voter11 13.130227 3 1 3 1 
voter12 6.056291 3 1 3 3 
voter13 23.992772 3 3 1 1 
voter14 16.699207 3 3 1 3 
voter15 98.165759 3 3 3 1 
voter16 129.664430 3 3 3 3 
 460.000000     

 
The corresponding max-flow problem has the following form: 

 
Each voting pattern, where voters strictly prefer at least one 

alternative of the set {b,c,e,j} to alternative a, is represented by a 
vertex. Each alternative of the set {b,c,e,j} is represented by a vertex. 
Furthermore, there is a vertex “source” and a vertex “drain”. 

 
From the vertex “source” we draw a link to each vertex that 

represents a voting pattern. The maximum capacity of this link is the 
number of voters with this voting pattern. 

 
From each vertex, that represents a voting pattern, we draw a link 

to each vertex that represents an alternative that is strictly preferred to 
alternative a by voters with this voting pattern. The maximum 
capacity of this link is the number of voters with this voting pattern. 

 
From each vertex, that represents an alternative, we draw a link to 

the vertex “drain”. The maximum capacity of this link is r(z–1). 
 
The task is: Maximize the total flow from the vertex “source” to 

the vertex “drain”. 
 

In our case, we get a digraph with 21 vertices and 51 links. 
 

Furthermore, we get: 
 

r(0) : = ( N – W ) / M = ( 460 – 129.664430 ) / 4 = 82.583893 
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Our digraph has the following form: 
 

link start end capacity 
1 source voter01 36.597383 
2 source voter02 5.481150 
3 source voter03 13.279131 
4 source voter04 4.859413 
5 source voter05 35.425375 
6 source voter06 5.490934 
7 source voter07 22.855333 
8 source voter08 19.835570 
9 source voter09 22.928716 
10 source voter10 5.538309 
11 source voter11 13.130227 
12 source voter12 6.056291 
13 source voter13 23.992772 
14 source voter14 16.699207 
15 source voter15 98.165759 
16 voter01 alternative b 36.597383 
17 voter01 alternative c 36.597383 
18 voter01 alternative e 36.597383 
19 voter01 alternative j 36.597383 
20 voter02 alternative b 5.481150 
21 voter02 alternative c 5.481150 
22 voter02 alternative e 5.481150 
23 voter03 alternative b 13.279131 
24 voter03 alternative c 13.279131 
25 voter03 alternative j 13.279131 
26 voter04 alternative b 4.859413 
27 voter04 alternative c 4.859413 
28 voter05 alternative b 35.425375 
29 voter05 alternative e 35.425375 
30 voter05 alternative j 35.425375 
31 voter06 alternative b 5.490934 
32 voter06 alternative e 5.490934 
33 voter07 alternative b 22.855333 
34 voter07 alternative j 22.855333 
35 voter08 alternative b 19.835570 
36 voter09 alternative c 22.928716 
37 voter09 alternative e 22.928716 
38 voter09 alternative j 22.928716 
39 voter10 alternative c 5.538309 
40 voter10 alternative e 5.538309 
41 voter11 alternative c 13.130227 
42 voter11 alternative j 13.130227 
43 voter12 alternative c 6.056291 
44 voter13 alternative e 23.992772 
45 voter13 alternative j 23.992772 
46 voter14 alternative e 16.699207 
47 voter15 alternative j 98.165759 
48 alternative b drain r(z–1) 
49 alternative c drain r(z–1) 
50 alternative e drain r(z–1) 
51 alternative j drain r(z–1) 
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The following 13 pages document the solutions for (9.2.2.5) – (9.2.2.10). 
 

We get: 
 

r(0) = 82.583893; s(0) = 0.000000 
r(1) = 78.688426; s(1) = 71.469640 
r(2) = 77.714559; s(2) = 75.365107 
r(3) = 77.471093; s(3) = 76.740693 
r(4) = 77.410226; s(4) = 77.227626 
r(5) = 77.395009; s(5) = 77.349359 
r(6) = 77.391205; s(6) = 77.379793  
r(7) = 77.390254; s(7) = 77.387401 
r(8) = 77.390016; s(8) = 77.389303 
r(9) = 77.389957; s(9) = 77.389779 
r(10) = 77.389942; s(10) = 77.389897 
r(11) = 77.389938; s(11) = 77.389927 
r(12) = 77.389937; s(12) = 77.389935 
 

We get: 
 

r = 
∞→z

lim  r(z) = 
∞→z

lim  s(z) = 77.389937 
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Stage z = 1: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 82.583893 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 34.239372 
18 voter01 alternative e 36.597383 2.358011 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 35.425375 
29 voter05 alternative e 35.425375 0.000000 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 82.583893 
48 alternative b drain r(0) = 82.583893 78.116279 
49 alternative c drain r(0) = 82.583893 82.583893 
50 alternative e drain r(0) = 82.583893 71.469640 
51 alternative j drain r(0) = 82.583893 82.583893 
 
r(1) = ( 78.116279 + 82.583893 + 71.469640 + 82.583893 ) / 4 = 78.688426 
s(1) = max { 0.000000; min { 78.116279; 82.583893; 71.469640; 82.583893 } } = 71.469640 
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Stage z = 2: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 78.688426 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 30.343905 
18 voter01 alternative e 36.597383 6.253478 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 35.425375 
29 voter05 alternative e 35.425375 0.000000 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 78.688426 
48 alternative b drain r(1) = 78.688426 78.116279 
49 alternative c drain r(1) = 78.688426 78.688426 
50 alternative e drain r(1) = 78.688426 75.365107 
51 alternative j drain r(1) = 78.688426 78.688426 
 
r(2) = ( 78.116279 + 78.688426 + 75.365107 + 78.688426 ) / 4 = 77.714559 
s(2) = max { 71.469640; min { 78.116279; 78.688426; 75.365107 ; 78.688426 } } = 75.365107 

  



Markus Schulze, “The Schulze Method of Voting” 

 234 

Stage z = 3: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.714559 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.370038 
18 voter01 alternative e 36.597383 7.227344 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 35.023656 
29 voter05 alternative e 35.425375 0.401719 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.714559 
48 alternative b drain r(2) = 77.714559 77.714559 
49 alternative c drain r(2) = 77.714559 77.714559 
50 alternative e drain r(2) = 77.714559 76.740693 
51 alternative j drain r(2) = 77.714559 77.714559 
 
r(3) = ( 77.714559 + 77.714559 + 76.740693 + 77.714559 ) / 4 = 77.471093 
s(3) = max { 75.365107; min { 77.714559; 77.714559; 76.740693 ; 77.714559 } } = 76.740693 
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Stage z = 4: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.471093 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.126572 
18 voter01 alternative e 36.597383 7.470811 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.780190 
29 voter05 alternative e 35.425375 0.645186 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.471093 
48 alternative b drain r(3) = 77.471093 77.471093 
49 alternative c drain r(3) = 77.471093 77.471093 
50 alternative e drain r(3) = 77.471093 77.227626 
51 alternative j drain r(3) = 77.471093 77.471093 
 
r(4) = ( 77.471093 + 77.471093 + 77.227626 + 77.471093 ) / 4 = 77.410226 
s(4) = max { 76.740693; min { 77.471093; 77.471093; 77.227626 ; 77.471093 } } = 77.227626 
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Stage z = 5: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.410226 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.065705 
18 voter01 alternative e 36.597383 7.531678 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.719323 
29 voter05 alternative e 35.425375 0.706053 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.410226 
48 alternative b drain r(4) = 77.410226 77.410226 
49 alternative c drain r(4) = 77.410226 77.410226 
50 alternative e drain r(4) = 77.410226 77.349359 
51 alternative j drain r(4) = 77.410226 77.410226 
 
r(5) = ( 77.410226 + 77.410226 + 77.349359 + 77.410226 ) / 4 = 77.395009 
s(5) = max { 77.227626; min { 77.410226; 77.410226; 77.349359; 77.410226 } } = 77.349359 
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Stage z = 6: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.395009 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.050488 
18 voter01 alternative e 36.597383 7.546894 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.704106 
29 voter05 alternative e 35.425375 0.721269 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.395009 
48 alternative b drain r(5) = 77.395009 77.395009 
49 alternative c drain r(5) = 77.395009 77.395009 
50 alternative e drain r(5) = 77.395009 77.379793 
51 alternative j drain r(5) = 77.395009 77.395009 
 
r(6) = ( 77.395009 + 77.395009 + 77.379793 + 77.395009 ) / 4 = 77.391205 
s(6) = max { 77.349359; min { 77.395009; 77.395009; 77.379793; 77.395009 } } = 77.379793 
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Stage z = 7: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.391205 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.046684 
18 voter01 alternative e 36.597383 7.550699 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.700302 
29 voter05 alternative e 35.425375 0.725073 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.391205 
48 alternative b drain r(6) = 77.391205 77.391205 
49 alternative c drain r(6) = 77.391205 77.391205 
50 alternative e drain r(6) = 77.391205 77.387401 
51 alternative j drain r(6) = 77.391205 77.391205 
 
r(7) = ( 77.391205 + 77.391205 + 77.387401 + 77.391205 ) / 4 = 77.390254 
s(7) = max { 77.379793; min { 77.391205; 77.391205; 77.387401; 77.391205 } } = 77.387401 
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Stage z = 8: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.390254 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045733 
18 voter01 alternative e 36.597383 7.551650 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699351 
29 voter05 alternative e 35.425375 0.726024 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.390254 
48 alternative b drain r(7) = 77.390254 77.390254 
49 alternative c drain r(7) = 77.390254 77.390254 
50 alternative e drain r(7) = 77.390254 77.389303 
51 alternative j drain r(7) = 77.390254 77.390254 
 
r(8) = ( 77.390254 + 77.390254 + 77.389303 + 77.390254 ) / 4 = 77.390016 
s(8) = max { 77.387401; min { 77.390254; 77.390254; 77.389303; 77.390254 } } = 77.389303 

  



Markus Schulze, “The Schulze Method of Voting” 

 240 

Stage z = 9: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.390016 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045495 
18 voter01 alternative e 36.597383 7.551887 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699113 
29 voter05 alternative e 35.425375 0.726262 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.390016 
48 alternative b drain r(8) = 77.390016 77.390016 
49 alternative c drain r(8) = 77.390016 77.390016 
50 alternative e drain r(8) = 77.390016 77.389779 
51 alternative j drain r(8) = 77.390016 77.390016 
 
r(9) = ( 77.390016 + 77.390016 + 77.389779 + 77.390016 ) / 4 = 77.389957 
s(9) = max { 77.389303; min { 77.390016; 77.390016; 77.389779; 77.390016 } } = 77.389779 
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Stage z = 10: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.389957 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045436 
18 voter01 alternative e 36.597383 7.551947 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699054 
29 voter05 alternative e 35.425375 0.726322 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.389957 
48 alternative b drain r(9) = 77.389957 77.389957 
49 alternative c drain r(9) = 77.389957 77.389957 
50 alternative e drain r(9) = 77.389957 77.389897 
51 alternative j drain r(9) = 77.389957 77.389957 
 
r(10) = ( 77.389957 + 77.389957 + 77.389897 + 77.389957 ) / 4 = 77.389942 
s(10) = max { 77.389779; min { 77.389957; 77.389957; 77.389897; 77.389957 } } = 77.389897 
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Stage z = 11: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.389942 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045421 
18 voter01 alternative e 36.597383 7.551962 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699039 
29 voter05 alternative e 35.425375 0.726336 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.389942 
48 alternative b drain r(10) = 77.389942 77.389942 
49 alternative c drain r(10) = 77.389942 77.389942 
50 alternative e drain r(10) = 77.389942 77.389927 
51 alternative j drain r(10) = 77.389942 77.389942 
 
r(11) = ( 77.389942 + 77.389942 + 77.389927 + 77.389942 ) / 4 = 77.389938 
s(11) = max { 77.389897; min { 77.389942; 77.389942; 77.389927; 77.389942 } } = 77.389927 
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Stage z = 12: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.389938 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045417 
18 voter01 alternative e 36.597383 7.551965 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699035 
29 voter05 alternative e 35.425375 0.726340 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.389938 
48 alternative b drain r(11) = 77.389938 77.389938 
49 alternative c drain r(11) = 77.389938 77.389938 
50 alternative e drain r(11) = 77.389938 77.389935 
51 alternative j drain r(11) = 77.389938 77.389938 
 
r(12) = ( 77.389938 + 77.389938 + 77.389935 + 77.389938 ) / 4 = 77.389937 
s(12) = max { 77.389927; min { 77.389938; 77.389938; 77.389935; 77.389938 } } = 77.389935 

  



Markus Schulze, “The Schulze Method of Voting” 

 244 

Stage z = 13: 
 

link start end capacity flow 
1 source voter01 36.597383 36.597383 
2 source voter02 5.481150 5.481150 
3 source voter03 13.279131 13.279131 
4 source voter04 4.859413 4.859413 
5 source voter05 35.425375 35.425375 
6 source voter06 5.490934 5.490934 
7 source voter07 22.855333 22.855333 
8 source voter08 19.835570 19.835570 
9 source voter09 22.928716 22.928716 
10 source voter10 5.538309 5.538309 
11 source voter11 13.130227 13.130227 
12 source voter12 6.056291 6.056291 
13 source voter13 23.992772 23.992772 
14 source voter14 16.699207 16.699207 
15 source voter15 98.165759 77.389937 
16 voter01 alternative b 36.597383 0.000000 
17 voter01 alternative c 36.597383 29.045416 
18 voter01 alternative e 36.597383 7.551966 
19 voter01 alternative j 36.597383 0.000000 
20 voter02 alternative b 5.481150 0.000000 
21 voter02 alternative c 5.481150 5.481150 
22 voter02 alternative e 5.481150 0.000000 
23 voter03 alternative b 13.279131 0.000000 
24 voter03 alternative c 13.279131 13.279131 
25 voter03 alternative j 13.279131 0.000000 
26 voter04 alternative b 4.859413 0.000000 
27 voter04 alternative c 4.859413 4.859413 
28 voter05 alternative b 35.425375 34.699034 
29 voter05 alternative e 35.425375 0.726341 
30 voter05 alternative j 35.425375 0.000000 
31 voter06 alternative b 5.490934 0.000000 
32 voter06 alternative e 5.490934 5.490934 
33 voter07 alternative b 22.855333 22.855333 
34 voter07 alternative j 22.855333 0.000000 
35 voter08 alternative b 19.835570 19.835570 
36 voter09 alternative c 22.928716 0.000000 
37 voter09 alternative e 22.928716 22.928716 
38 voter09 alternative j 22.928716 0.000000 
39 voter10 alternative c 5.538309 5.538309 
40 voter10 alternative e 5.538309 0.000000 
41 voter11 alternative c 13.130227 13.130227 
42 voter11 alternative j 13.130227 0.000000 
43 voter12 alternative c 6.056291 6.056291 
44 voter13 alternative e 23.992772 23.992772 
45 voter13 alternative j 23.992772 0.000000 
46 voter14 alternative e 16.699207 16.699207 
47 voter15 alternative j 98.165759 77.389937 
48 alternative b drain r(12) = 77.389937 77.389937 
49 alternative c drain r(12) = 77.389937 77.389937 
50 alternative e drain r(12) = 77.389937 77.389936 
51 alternative j drain r(12) = 77.389937 77.389937 
 
r(13) = ( 77.389937 + 77.389937 + 77.389936 + 77.389937 ) / 4 = 77.389937 
s(13) = max { 77.389935; min { 77.389937; 77.389937; 77.389936; 77.389937 } } = 77.389936 
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9.2.3. Applying the Schulze Tie-Breaking Method 
 

Table 9.2.3.1 lists the links in example A53. 
 

11 a b c e j 77.389937 99.563758 107.281879 101.107383 69.463087 
 
For example, row 11 of table 9.2.3.1 contains the following information: 
 
• N[{b,c,e,j};a] = 77.389937 
• N[{a,c,e,j};b] = 99.563758 
• N[{a,b,e,j};c] = 107.281879 
• N[{a,b,c,j};e] = 101.107383 
• N[{a,b,c,e};j] = 69.463087 
 
• The link {b, c, e, j} → {a, c, e, j} has a strength of (N[{b,c,e,j};a], N[{a,c,e,j};b]). 
• The link {b, c, e, j} → {a, b, e, j} has a strength of (N[{b,c,e,j};a], N[{a,b,e,j};c]). 
• The link {b, c, e, j} → {a, b, c, j} has a strength of (N[{b,c,e,j};a], N[{a,b,c,j};e]). 
• The link {b, c, e, j} → {a, b, c, e} has a strength of (N[{b,c,e,j};a], N[{a,b,c,e};j]). 
 
• The link {a, c, e, j} → {b, c, e, j} has a strength of (N[{a,c,e,j};b], N[{b,c,e,j};a]). 
• The link {a, c, e, j} → {a, b, e, j} has a strength of (N[{a,c,e,j};b], N[{a,b,e,j};c]). 
• The link {a, c, e, j} → {a, b, c, j} has a strength of (N[{a,c,e,j};b], N[{a,b,c,j};e]). 
• The link {a, c, e, j} → {a, b, c, e} has a strength of (N[{a,c,e,j};b], N[{a,b,c,e};j]). 
 
• The link {a, b, e, j} → {b, c, e, j} has a strength of (N[{a,b,e,j};c], N[{b,c,e,j};a]). 
• The link {a, b, e, j} → {a, c, e, j} has a strength of (N[{a,b,e,j};c], N[{a,c,e,j};b]). 
• The link {a, b, e, j} → {a, b, c, j} has a strength of (N[{a,b,e,j};c], N[{a,b,c,j};e]). 
• The link {a, b, e, j} → {a, b, c, e} has a strength of (N[{a,b,e,j};c], N[{a,b,c,e};j]). 
 
• The link {a, b, c, j} → {b, c, e, j} has a strength of (N[{a,b,c,j};e], N[{b,c,e,j};a]). 
• The link {a, b, c, j} → {a, c, e, j} has a strength of (N[{a,b,c,j};e], N[{a,c,e,j};b]). 
• The link {a, b, c, j} → {a, b, e, j} has a strength of (N[{a,b,c,j};e], N[{a,b,e,j};c]). 
• The link {a, b, c, j} → {a, b, c, e} has a strength of (N[{a,b,c,j};e], N[{a,b,c,e};j]). 
 
• The link {a, b, c, e} → {b, c, e, j} has a strength of (N[{a,b,c,e};j], N[{b,c,e,j};a]). 
• The link {a, b, c, e} → {a, c, e, j} has a strength of (N[{a,b,c,e};j], N[{a,c,e,j};b]). 
• The link {a, b, c, e} → {a, b, e, j} has a strength of (N[{a,b,c,e};j], N[{a,b,e,j};c]). 
• The link {a, b, c, e} → {a, b, c, j} has a strength of (N[{a,b,c,e};j], N[{a,b,c,j};e]). 
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When we apply the Schulze tie-breaker, as defined at stage 3 of section 
9.1.3, to the links of table 9.2.3.1, we get {a, d, g, j} as winning set. 

 
For example, we have: 
 
• Line 33: The link {a, b, g, j} → {a, d, g, j} has a strength of 

(N[{a,b,g,j};d], N[{a,d,g,j};b]) = ( 101.411379, 102.166302 ). 

• Line 33: The link {a, d, g, j} → {a, b, g, j} has a strength of 
(N[{a,d,g,j};b], N[{a,b,g,j};d]) = ( 102.166302, 101.411379 ). 

• Line 49: The link {a, b, g, j} → {a, f, g, j} has a strength of 
(N[{a,b,g,j};f], N[{a,f,g,j};b]) = ( 101.068282, 102.334802 ). 

• Line 49: The link {a, f, g, j} → {a, b, g, j} has a strength of 
(N[{a,f,g,j};b], N[{a,b,g,j};f]) = ( 102.334802, 101.068282 ). 

• Line 104: The link {a, d, g, j} → {a, f, g, j} has a strength of 
(N[{a,d,g,j};f], N[{a,f,g,j};d]) = ( 101.351648, 101.098901 ). 

• Line 104: The link {a, f, g, j} → {a, d, g, j} has a strength of 
(N[{a,f,g,j};d], N[{a,d,g,j};f]) = ( 101.098901, 101.351648 ). 

 
So {a, d, g, j} beats {a, b, g, j} in the direct comparison, {a, f, g, j} beats 

{a, b, g, j} in the direct comparison, and {a, d, g, j} beats {a, f, g, j} in the 
direct comparison. 
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When there are C alternatives, then there are (C!)/(((M+1)!)∙((C–M–1)!)) 
possible (M+1)-way contests. For C = 10 and M = 4, we get 252 possible    
5-way contests. Table 9.2.3.1 lists these 252 possible 5-way contests for 
example A53. 

 
When Schulze STV is used to choose M from (M+1) alternatives 

{a1,...,a(M+1)}, then that alternative k ∈ {1,...,(M+1)} is eliminated for which   
N[({a1,...,a(M+1)}\{ak});ak] is the maximum, while the other M alternatives are 
elected. In table 9.2.3.1, the maximum N[({a1,...,a(M+1)}\{ak});ak] of each     
5-way contest is fat and underlined. 

 
Suppose the maximum N[({a1,...,a(M+1)}\{ak});ak] of a (M+1)-way contest 

is not unique. Suppose 1 < m ≤ (M+1) entries are tied for maximum 
N[({a1,...,a(M+1)}\{ak});ak], then the m alternatives with maximum 
N[({a1,...,a(M+1)}\{ak});ak] are tied for winning one of the remaining (m–1) 
seats, while the other (M+1–m) alternatives are elected. In table 9.2.3.1 for 
those 5-way contests, where the maximum N[({a1,...,a(M+1)}\{ak});ak] is     
not unique, those N[({a1,...,a(M+1)}\{ak});ak], that are tied for maximum 
N[({a1,...,a(M+1)}\{ak});ak], are italic and underlined (only lines 27, 149, and 
155). 

 
In table 9.2.3.1, we see: 
 
• Alternatives a, g, and j each win in every 5-way contest. 

• Alternative d is tied for winning in one 5-way contest (line 27) and 
wins in every other 5-way contest. 

• Alternative f loses in one 5-way contest (line 104) and wins in every 
other 5-way contest. 

• Alternative b wins in 121 5-way contests, is tied for winning in one  
5-way contest (line 27), and loses in four 5-way contests (lines 30, 
33, 49, and 174). 

• Alternative e wins 111 times and loses 15 times. 

• Alternative h wins 59 times and loses 67 times. 

• Alternative c wins 45 times, is tied twice (lines 149 and 155), and 
loses 79 times. 

• Alternative i wins 41 times, is tied twice (lines 149 and 155), and 
loses 83 times. 
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 k l m n o N[{l,m,n,o};k] N[{k,m,n,o};l] N[{k,l,n,o};m] N[{k,l,m,o};n] N[{k,l,m,n};o] 
1 a b c d e 69.311512 97.347630 104.356659 91.117381 97.866817 
2 a b c d f 72.494331 97.267574 106.394558 91.791383 92.052154 
3 a b c d g 74.292035 97.699115 105.077434 97.444690 85.486726 
4 a b c d h 69.482146 95.615034 103.473804 90.375854 101.053161 
5 a b c d i 68.329596 95.403587 103.912556 91.535874 100.818386 
6 a b c d j 83.765432 100.720621 106.330377 96.895787 70.631929 
7 a b c e f 68.050459 96.800459 106.559633 97.327982 91.261468 
8 a b c e g 71.971047 98.864143 106.035635 98.608018 84.521158 
9 a b c e h 65.248069 95.126728 104.665899 95.391705 99.567599 

10 a b c e i 63.064516 95.126728 104.400922 96.186636 101.221198 
11 a b c e j 77.389937 99.563758 107.281879 101.107383 69.463087 
12 a b c f g 73.393258 98.202247 107.505618 95.101124 85.797753 
13 a b c f h 68.320236 95.877598 105.704388 88.972286 101.125492 
14 a b c f i 65.979263 94.596774 106.255760 92.741935 100.426267 
15 a b c f j 82.285264 100.495495 107.229730 97.646396 72.004505 
16 a b c g h 72.748673 96.828442 106.173815 81.252822 102.996248 
17 a b c g i 70.450450 96.869369 105.675676 83.141892 103.862613 
18 a b c g j 86.629956 102.334802 108.667401 88.403084 73.964758 
19 a b c h i 63.805224 93.221709 103.845266 99.797547 99.330254 
20 a b c h j 76.937668 98.977528 105.438202 108.022472 67.449438 
21 a b c i j 75.764706 99.529148 106.233184 105.201794 67.719298 
22 a b d e f 74.020045 97.839644 92.973274 100.913140 94.253898 
23 a b d e g 75.571429 99.329670 97.813187 100.846154 86.439560 
24 a b d e h 70.771762 97.646396 91.430180 98.423423 101.728238 
25 a b d e i 69.205817 96.733781 92.360179 99.049217 102.651007 
26 a b d e j 86.821192 100.529801 97.483444 102.814570 72.350993 
27 a b d f g 77.090708 98.716814 98.716814 97.444690 88.030973 
28 a b d f h 74.397888 98.164414 91.948198 92.725225 102.764274 
29 a b d f i 72.322222 96.600000 93.277778 95.833333 101.966667 
30 a b d f j 87.716186 100.975610 96.895787 99.190687 75.221729 
31 a b d g h 76.388633 98.462389 96.681416 83.960177 104.507385 
32 a b d g i 73.946785 97.660754 97.915743 85.421286 105.055432 
33 a b d g j 89.332604 102.166302 101.411379 90.842451 76.247265 
34 a b d h i 69.217708 96.092342 91.430180 101.469229 101.790541 
35 a b d h j 84.333333 100.433333 95.577778 108.100000 71.555556 
36 a b d i j 84.176158 100.243363 96.935841 106.095133 72.256637 
37 a b e f g 75.055310 99.734513 100.243363 97.444690 87.522124 
38 a b e f h 70.311453 97.307692 98.088235 92.104072 102.188547 
39 a b e f i 67.847380 95.876993 97.972665 95.091116 103.211845 
40 a b e f j 84.966518 99.598214 101.651786 98.828125 74.955357 
41 a b e g h 74.337778 99.120267 99.632517 82.984410 103.925029 
42 a b e g i 72.131696 98.828125 99.598214 84.196429 105.245536 
43 a b e g j 88.208791 101.351648 104.131868 90.230769 76.076923 
44 a b e h i 64.914754 95.308219 96.358447 101.021319 102.397260 
45 a b e h j 81.744689 98.828125 100.111607 107.555804 71.104911 
46 a b e i j 78.449612 99.306488 100.850112 107.281879 70.492170 
47 a b f g h 76.384893 99.529148 94.630045 84.831839 104.624076 
48 a b f g i 73.671875 98.058036 97.287946 85.993304 104.988839 
49 a b f g j 87.643172 102.334802 101.068282 90.429515 78.524229 
50 a b f h i 68.484353 95.000000 92.105263 102.305121 102.105263 

 
Table 9.2.3.1 (part 1 of 5): links in example A53 
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 k l m n o N[{l,m,n,o};k] N[{k,m,n,o};l] N[{k,l,n,o};m] N[{k,l,m,o};n] N[{k,l,m,n};o] 
51 a b f h j 82.438202 99.752809 95.876404 109.056180 72.876404 
52 a b f i j 82.769058 99.529148 97.724215 106.748879 73.228700 
53 a b g h i 73.008267 97.347630 81.512415 103.255842 104.875847 
54 a b g h j 86.441242 101.230599 86.951220 110.410200 74.966741 
55 a b g i j 86.377778 101.966667 88.677778 109.122222 73.855556 
56 a b h i j 78.376979 98.608597 107.454751 104.852941 68.028169 
57 a c d e f 72.781532 106.452703 91.430180 97.128378 92.207207 
58 a c d e g 74.635762 104.845475 96.975717 97.737307 85.805740 
59 a c d e h 69.115667 104.235160 90.582192 93.995434 102.071548 
60 a c d e i 67.753950 103.837472 91.117381 95.011287 102.279910 
61 a c d e j 84.830247 107.095344 97.405765 100.465632 69.866962 
62 a c d f g 74.698661 107.299107 97.544643 94.720982 85.736607 
63 a c d f h 71.415141 105.329545 90.693182 91.215909 101.346222 
64 a c d f i 69.728507 105.893665 90.542986 93.404977 100.429864 
65 a c d f j 86.314607 106.988764 96.134831 98.460674 72.101124 
66 a c d g h 73.476924 104.988839 95.747768 81.629464 104.157004 
67 a c d g i 71.361607 104.475446 96.517857 83.939732 103.705357 
68 a c d g j 87.389868 108.414097 101.574890 88.909692 73.711454 
69 a c d h i 66.115932 102.894737 90.000000 100.463016 100.526316 
70 a c d h j 81.284987 105.245536 96.004464 107.555804 67.767857 
71 a c d i j 80.402166 105.995526 96.219239 105.480984 69.205817 
72 a c e f g 72.833333 107.588889 97.877778 95.066667 86.633333 
73 a c e f h 67.058858 106.295872 94.690367 90.206422 101.748481 
74 a c e f i 64.303944 105.928074 94.454756 92.053364 103.259861 
75 a c e f j 81.705790 107.247191 99.752809 97.943820 73.134831 
76 a c e g h 71.904859 106.471910 96.134831 81.921348 103.567051 
77 a c e g i 69.775281 105.438202 96.393258 83.730337 104.662921 
78 a c e g j 85.428571 108.934066 102.615385 88.967033 74.054945 
79 a c e h i 61.699912 104.060325 92.053364 100.794287 101.392111 
80 a c e h j 76.021251 106.510067 98.020134 107.796421 66.018519 
81 a c e i j 72.631579 106.693002 98.905192 106.952596 65.612403 
82 a c f g h 72.163286 107.764045 93.292135 82.696629 104.083905 
83 a c f g i 69.414414 107.747748 94.538288 84.177928 104.121622 
84 a c f g j 84.911308 109.135255 100.465632 88.481153 77.006652 
85 a c f h i 62.378284 105.372093 90.662791 100.761251 100.825581 
86 a c f h j 77.297595 106.433409 96.049661 107.731377 70.349887 
87 a c f i j 75.027712 106.394558 97.267574 106.133787 70.147392 
88 a c g h i 68.278778 105.852273 79.454545 102.914404 103.500000 
89 a c g h j 84.077778 108.611111 84.844444 109.888889 72.577778 
90 a c g i j 82.672811 108.866667 86.888889 108.355556 72.066667 
91 a c h i j 69.181244 105.351474 106.655329 104.308390 63.411215 
92 a d e f g 77.087912 98.318681 99.329670 97.054945 88.208791 
93 a d e f h 73.290722 92.567265 97.724215 92.567265 103.850533 
94 a d e f i 71.521253 92.617450 96.733781 94.932886 104.194631 
95 a d e f j 87.144444 97.366667 101.200000 99.155556 75.133333 
96 a d e g h 75.618401 96.559020 98.351893 84.008909 105.461777 
97 a d e g i 73.691796 97.915743 97.405765 85.166297 105.820399 
98 a d e g j 88.829322 101.663020 102.921225 91.345733 75.240700 
99 a d e h i 67.494687 91.477273 95.136364 102.653041 103.238636 

100 a d e h j 84.656319 96.640798 99.700665 108.370288 70.631929 
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 k l m n o N[{l,m,n,o};k] N[{k,m,n,o};l] N[{k,l,n,o};m] N[{k,l,m,o};n] N[{k,l,m,n};o] 
101 a d e i j 83.348624 97.366667 100.688889 107.333333 70.533333 
102 a d f g h 76.983694 97.111111 95.577778 85.100000 105.227417 
103 a d f g i 74.366667 97.622222 96.600000 86.377778 105.033333 
104 a d f g j 88.714286 101.098901 101.351648 90.736264 78.098901 
105 a d f h i 70.051272 91.323529 93.665158 102.188547 102.771493 
106 a d f h j 84.966518 95.491071 97.544643 108.325893 73.671875 
107 a d f i j 85.223214 96.261161 98.571429 106.785714 73.158482 
108 a d g h i 73.032875 96.177130 81.737668 104.108381 104.943946 
109 a d g h j 87.197802 100.087912 87.956044 110.197802 74.560440 
110 a d g i j 86.821192 101.291391 89.359823 108.907285 73.620309 
111 a d h i j 80.164441 95.661435 106.748879 105.717489 69.876682 
112 a e f g h 74.683694 98.900000 95.322222 85.611111 105.482973 
113 a e f g i 72.131696 98.058036 97.031250 86.506696 106.272321 
114 a e f g j 86.123348 102.841410 101.321586 91.189427 78.524229 
115 a e f h i 65.476289 94.690367 92.052752 103.331050 104.449541 
116 a e f h j 81.372768 98.828125 96.774554 109.095982 73.928571 
117 a e f i j 80.965732 99.752809 97.943820 108.539326 72.617978 
118 a e g h i 71.191111 97.088036 82.031603 104.553810 105.135440 
119 a e g h j 85.486726 101.769912 88.030973 110.674779 74.037611 
120 a e g i j 84.723451 102.533186 89.811947 109.402655 73.528761 
121 a e h i j 74.210623 97.646396 107.747748 107.229730 66.179245 
122 a f g h i 71.646432 94.842697 83.471910 104.600759 105.438202 
123 a f g h j 84.656319 99.190687 87.461197 110.665188 78.026608 
124 a f g i j 84.911308 99.955654 89.246120 109.390244 76.496674 
125 a f h i j 77.294626 95.486425 107.975113 107.194570 70.509050 
126 a g h i j 83.612975 85.671141 109.597315 108.568233 72.550336 
127 b c d e f 89.066059 101.116173 86.708428 97.710706 85.398633 
128 b c d e g 90.135135 101.272523 90.394144 97.387387 80.810811 
129 b c d e h 88.255814 97.616279 82.906977 94.941860 96.279070 
130 b c d e i 85.845070 97.453052 82.605634 95.833333 98.262911 
131 b c d e j 97.877778 103.755556 92.255556 101.711111 64.400000 
132 b c d f g 89.587054 103.705357 93.180804 90.100446 83.426339 
133 b c d f h 90.057078 99.771689 85.593607 86.381279 98.196347 
134 b c d f i 87.494305 100.068337 85.922551 87.861509 98.653298 
135 b c d f j 98.864143 104.755011 93.229399 95.278396 67.873051 
136 b c d g h 90.613839 101.138393 90.613839 78.292411 99.341518 
137 b c d g i 88.542141 101.116173 90.113895 79.897494 100.330296 
138 b c d g j 99.432314 105.207424 97.674672 88.133188 69.552402 
139 b c d h i 86.516204 97.164352 82.256944 96.099537 97.962963 
140 b c d h j 97.150776 101.995565 90.776053 106.330377 63.747228 
141 b c d i j 97.190265 103.042035 91.084071 105.586283 63.097345 
142 b c e f g 90.598194 102.279910 95.530474 88.521445 83.069977 
143 b c e f h 88.211765 98.764706 92.000000 83.611765 97.411765 
144 b c e f i 85.771971 98.337292 92.327791 84.242761 99.320184 
145 b c e f j 96.828442 104.356659 99.943567 93.713318 65.158014 
146 b c e g h 91.052632 101.052632 92.894737 77.105263 97.894737 
147 b c e g i 88.790698 100.290698 92.802326 77.558140 100.558140 
148 b c e g j 99.329670 105.648352 101.857143 86.692308 66.472527 
149 b c e h i 84.166667 96.111111 88.888889 94.722222 96.111111 
150 b c e h j 95.011287 102.799097 97.866817 105.135440 59.187359 
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 k l m n o N[{l,m,n,o};k] N[{k,m,n,o};l] N[{k,l,n,o};m] N[{k,l,m,o};n] N[{k,l,m,n};o] 
151 b c e i j 95.226244 103.031674 98.608597 105.633484 57.500000 
152 b c f g h 91.578947 101.842105 87.631579 79.210526 99.736842 
153 b c f g i 88.947368 101.842105 88.526779 80.263158 100.420590 
154 b c f g j 99.835165 105.901099 96.549451 88.461538 69.252747 
155 b c f h i 85.357995 97.159905 83.711217 96.610979 97.159905 
156 b c f h j 96.049661 102.539503 91.117381 106.693002 63.600451 
157 b c f i j 96.568849 103.058691 92.934537 104.875847 62.562077 
158 b c g h i 87.909931 100.392610 74.896074 97.205543 99.595843 
159 b c g h j 98.425721 104.290466 83.636364 107.860310 65.787140 
160 b c g i j 99.006623 105.099338 85.044150 106.876380 63.973510 
161 b c h i j 94.659864 100.918367 105.351474 102.743764 56.326531 
162 b d e f g 91.338496 93.119469 98.971239 92.101770 84.469027 
163 b d e f h 90.170455 85.727273 97.488636 87.818182 98.795455 
164 b d e f i 87.879819 85.793651 96.746032 89.288441 100.292058 
165 b d e f j 97.877778 93.533333 102.477778 96.088889 70.022222 
166 b d e g h 92.258427 90.191011 97.943820 79.078652 100.528090 
167 b d e g i 89.909091 90.431818 97.488636 79.715909 102.454545 
168 b d e g j 99.146608 97.636761 102.921225 88.326039 71.969365 
169 b d e h i 86.918605 82.104651 95.209302 96.279070 99.488372 
170 b d e h j 97.111111 91.233333 100.688889 105.288889 65.677778 
171 b d e i j 96.517857 91.127232 101.395089 107.299107 63.660714 
172 b d f g h 93.180804 91.897321 91.897321 81.629464 101.395089 
173 b d f g i 89.843750 91.897321 93.027237 82.399554 102.832138 
174 b d f g j 99.901532 97.888403 99.146608 89.080963 73.982495 
175 b d f h i 88.401361 84.229025 89.705215 97.528345 100.136054 
176 b d f h j 98.133333 91.744444 94.300000 106.311111 69.511111 
177 b d f i j 97.150776 92.560976 95.620843 106.585366 68.082040 
178 b d g h i 90.449438 89.932584 78.044944 99.235955 102.337079 
179 b d g h j 99.076923 96.043956 85.428571 107.923077 71.527473 
180 b d g i j 98.788546 96.762115 86.629956 108.414097 69.405286 
181 b d h i j 96.004464 89.843750 104.732143 105.245536 64.174107 
182 b e f g h 92.784091 95.920455 90.170455 79.977273 101.147727 
183 b e f g i 90.113895 95.353075 90.743058 80.683371 103.106601 
184 b e f g j 99.295154 102.081498 98.535242 88.403084 71.685022 
185 b e f h i 85.910165 90.531915 85.638298 97.872340 100.047281 
186 b e f h j 96.049661 98.386005 92.934537 105.914221 66.715576 
187 b e f i j 95.659091 99.318182 93.568182 106.897727 64.556818 
188 b e g h i 90.357143 93.536866 75.518433 99.101382 101.486175 
189 b e g h j 98.425721 100.465632 84.401330 108.115299 68.592018 
190 b e g i j 98.462389 101.006637 85.486726 108.639381 66.404867 
191 b e h i j 93.995434 96.358447 104.235160 106.073059 59.337900 
192 b f g h i 90.526316 90.000000 77.631579 100.000000 101.842105 
193 b f g h j 99.155556 95.322222 85.611111 108.355556 71.555556 
194 b f g i j 99.155556 96.855556 86.377778 107.844444 69.766667 
195 b f h i j 95.000000 90.789474 105.789474 105.263158 63.157895 
196 b g h i j 97.982063 82.253363 107.264574 106.748879 65.751121 
197 c d e f g 102.193764 91.180401 96.559020 88.106904 81.959911 
198 c d e f h 99.366359 85.322581 94.066820 83.997696 97.246544 
199 c d e f i 97.696759 84.386574 93.437500 84.227320 100.251846 
200 c d e f j 103.680089 93.903803 100.335570 94.932886 67.147651 
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201 c d e g h 100.335570 88.501119 95.190157 77.953020 98.020134 
202 c d e g i 98.684211 87.894737 94.210526 78.157895 101.052632 
203 c d e g j 104.867841 97.268722 102.081498 87.643172 68.138767 
204 c d e h i 95.293427 81.525822 91.514085 93.943662 97.723005 
205 c d e h j 102.165179 91.640625 98.571429 105.758929 61.863839 
206 c d e i j 102.393736 91.588367 99.563758 105.738255 60.715884 
207 c d f g h 102.733333 90.977778 88.677778 79.222222 98.388889 
208 c d f g i 100.981941 89.559819 88.106552 79.954853 101.396834 
209 c d f g j 105.142857 98.318681 97.560440 88.461538 70.516484 
210 c d f h i 97.205543 83.660508 85.519630 94.815242 98.799076 
211 c d f h j 102.881166 92.051570 93.598655 105.201794 66.266816 
212 c d f i j 102.651007 92.617450 94.418345 105.480984 64.832215 
213 c d g h i 99.200450 88.322072 75.889640 95.833333 100.754505 
214 c d g h j 103.780488 96.385809 84.656319 107.350333 67.827051 
215 c d g i j 104.314159 96.426991 86.250000 106.603982 66.404867 
216 c d h i j 101.076233 90.246637 104.428251 103.654709 60.594170 
217 c e f g h 101.531532 94.279279 86.509009 78.738739 98.941441 
218 c e f g i 100.459770 92.793103 85.761385 78.517241 102.468500 
219 c e f g j 104.890110 101.098901 97.054945 88.208791 68.747253 
220 c e f h i 96.156627 88.674699 81.192771 95.602410 98.373494 
221 c e f h j 102.482993 97.006803 91.791383 106.133787 62.585034 
222 c e f i j 101.902050 98.234624 92.209567 106.093394 61.560364 
223 c e g h i 99.438073 90.470183 74.380734 95.745413 99.965596 
224 c e g h j 104.011111 99.411111 84.077778 107.588889 64.911111 
225 c e g i j 104.059735 100.243363 85.486726 106.858407 63.351770 
226 c e h i j 100.559361 95.570776 104.497717 103.710046 55.662100 
227 c f g h i 100.821918 85.593607 76.141553 96.883562 100.559361 
228 c f g h j 104.314159 94.391593 84.723451 107.621681 68.949115 
229 c f g i j 104.314159 95.409292 86.504425 106.858407 66.913717 
230 c f h i j 100.526316 90.526316 105.000000 103.947368 60.000000 
231 c g h i j 102.935268 81.886161 106.785714 104.988839 63.404018 
232 d e f g h 91.233333 97.366667 89.955556 80.755556 100.688889 
233 d e f g i 91.073826 94.932886 90.148104 80.525727 103.319458 
234 d e f g j 98.355263 101.381579 98.607456 89.024123 72.631579 
235 d e f h i 83.926097 92.690531 86.050808 96.674365 100.658199 
236 d e f h j 93.082960 98.755605 93.856502 105.717489 68.587444 
237 d e f i j 93.082960 100.044843 94.114350 107.006726 65.751121 
238 d e g h i 88.640449 95.101124 76.235955 98.202247 101.820225 
239 d e g h j 95.918142 100.243363 85.741150 108.639381 69.457965 
240 d e g i j 96.508811 100.814978 86.883260 107.907489 67.885463 
241 d e h i j 90.394144 97.646396 104.380631 105.416667 62.162162 
242 d f g h i 89.587054 90.100446 78.805804 98.828125 102.678571 
243 d f g h j 95.960265 96.214128 86.567329 107.891832 73.366446 
244 d f g i j 97.015419 96.762115 87.389868 107.907489 70.925110 
245 d f h i j 91.171171 92.725225 103.862613 105.934685 66.306306 
246 d g h i j 94.600887 83.891353 106.585366 106.330377 68.592018 
247 e f g h i 93.568182 88.079545 76.840909 99.318182 102.193182 
248 e f g h j 99.700665 95.620843 85.676275 108.625277 70.376940 
249 e f g i j 100.243363 96.426991 86.758850 107.876106 68.694690 
250 e f h i j 95.745413 90.733945 105.240826 106.032110 62.247706 
251 e g h i j 98.058036 83.169643 107.555804 106.272321 64.944196 
252 f g h i j 93.131991 83.355705 107.539150 106.767338 69.205817 
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9.3. Condorcet Criterion for Multi-Winner Elections 
 

In this section, we will propose a generalization of the Condorcet criterion 
to multi-winner elections. The Condorcet criterion for single-winner elections 
(section 4.7) is important because, when there is a Condorcet winner b ∈ A, 
then it is still a Condorcet winner when alternatives a1,...,an ∈ A \ {b} are 
removed. So an alternative b ∈ A doesn’t owe his property of being a 
Condorcet winner to the presence of some other alternatives. Therefore, 
when we declare a Condorcet winner b ∈ A elected whenever a Condorcet 
winner exists, we know that no other alternatives a1,...,an ∈ A \ {b} have 
changed the result of the election without being elected. 

Therefore, a generalization of the Condorcet criterion to multi-winner 
elections should have the following properties: 

• It should not be possible that there are more than M Condorcet 
winners (where M is the number of seats). This property is important 
because the Condorcet winners will later be declared the winners. 

• Suppose b ∈ A is a Condorcet winner. Then it should still be a 
Condorcet winner when alternatives a1,...,an ∈ A \ {b} are removed. 

• The definition for “Condorcet winners” should be as weak as possible 
so that there are as many Condorcet winners as possible. 

We propose the following generalization: 

(9.3.1) In multi-winner elections, a Condorcet winner is an alternative 
b ∈ A that wins in every (M+1)-way contest. Suppose M|B        
( with ∅ ≠ M|B ⊆ AM ) is the set of potential winning sets when 
the used method to fill M seats is applied to the set B ( with     
∅ ≠ B ⊆ A and | B | > M ). Then we get: 

(9.3.1a) b ∈ A is a Condorcet winner : ⇔ 

∀ ∅ ≠ B ⊆ A with b ∈ B and | B | = (M+1) ∀ A ∈ M|B: b ∈ A. 

The Condorcet criterion says that, when there is a Condorcet 
winner, then it should also be a winner overall. In short: 

(9.3.1b) b ∈ A is a Condorcet winner. ⇒ ( ∀ A ∈ M: b ∈ A. ) 

When D satisfies (2.1.5) then for M = 1: 

• (9.3.1a) is identical to (4.7.5) and (4.11.1.1). 

• (9.3.1b) is identical to (4.7.6). 
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(9.3.2) In multi-winner elections, a weak Condorcet winner is an 
alternative b ∈ A that wins or is tied for winning/losing in every 
(M+1)-way contest. In short: 

(9.3.2a) b ∈ A is a weak Condorcet winner : ⇔ 

∀ ∅ ≠ B ⊆ A with b ∈ B and | B | = (M+1) ∃ A ∈ M|B: b ∈ A. 

A weak Condorcet winner should win or be tied for winning/ 
losing overall. In short: 

(9.3.2b) b ∈ A is a weak Condorcet winner. ⇒ ( ∃ A ∈ M: b ∈ A. ) 

When D satisfies (2.1.4) and (2.1.5) then for M = 1: 

• (9.3.2a) is identical to (4.11.1.2). 

• (9.3.2b) is identical to (4.11.1.6). 

(9.3.3) In multi-winner elections, A Condorcet loser is an alternative   
b ∈ A that loses in every (M+1)-way contest. In short: 

(9.3.3a) b ∈ A is a Condorcet loser : ⇔ 

∀ ∅ ≠ B ⊆ A with b ∈ B and | B | = (M+1) ∀ A ∈ M|B: b ∉ A. 

A Condorcet loser should be a loser overall. In short: 

(9.3.3b) b ∈ A is a Condorcet loser. ⇒ ( ∀ A ∈ M: b ∉ A. ) 

When D satisfies (2.1.5) then for M = 1: 

• (9.3.3a) is identical to (4.7.7) and (4.11.2.1). 

• (9.3.3b) is identical to (4.7.8). 

(9.3.4) In multi-winner elections, a weak Condorcet loser is an 
alternative b ∈ A that loses or is tied for winning/losing in every 
(M+1)-way contest. In short: 

(9.3.4a) b ∈ A is a weak Condorcet loser : ⇔ 

∀ ∅ ≠ B ⊆ A with b ∈ B and | B | = (M+1) ∃ A ∈ M|B: b ∉ A. 

A weak Condorcet loser should lose or be tied for winning/ 
losing overall. In short: 

(9.3.4b) b ∈ A is a weak Condorcet loser. ⇒ ( ∃ A ∈ M: b ∉ A. ) 

When D satisfies (2.1.4) and (2.1.5) then for M = 1: 

• (9.3.4a) is identical to (4.11.2.2). 

• (9.3.4b) is identical to (4.11.2.9). 
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It is important to keep in mind that, in multi-winner elections, the terms 
“Condorcet winner”, “weak Condorcet winner”, “Condorcet loser”, and 
“weak Condorcet loser” always refer to the specific election method. For 
example, plurality-at-large will lead to different Condorcet winners than an 
STV method. So in multi-winner elections, the Condorcet criterion rather 
refers to the inner logic of the specific election method than to alternatives 
that must be elected regardless of the election method used. 

If D2 satisfies (2.1.5), then we get for Schulze STV: 

(9.3.5) b ∈ A is a Condorcet winner ⇔ 
∀ {a1,...,aM} ⊆ A \ {b} ∃ ai ∈ {a1,...,aM}: 
N[{a1,...,aM};b] < N[({a1,...,aM,b}\{ai});ai]. 

(9.3.6) b ∈ A is a weak Condorcet winner ⇔ 
∀ {a1,...,aM} ⊆ A \ {b} ∃ ai ∈ {a1,...,aM}: 
N[{a1,...,aM};b] ≤ N[({a1,...,aM,b}\{ai});ai]. 

(9.3.7) b ∈ A is a Condorcet loser ⇔ 
∀ {a1,...,aM} ⊆ A \ {b} ∀ ai ∈ {a1,...,aM}: 
N[{a1,...,aM};b] > N[({a1,...,aM,b}\{ai});ai]. 

(9.3.8) b ∈ A is a weak Condorcet loser ⇔ 
∀ {a1,...,aM} ⊆ A \ {b} ∀ ai ∈ {a1,...,aM}: 
N[{a1,...,aM};b] ≥ N[({a1,...,aM,b}\{ai});ai]. 

In example A53, the alternatives a, g, and j win in every 5-way contest; 
therefore, these alternatives should also win overall. The alternative d is tied 
for winning in one case (line 27) and wins in every other case; therefore, this 
alternative should win or be tied for winning/losing overall. 

While there can be up to M Condorcet winners, there cannot be more than 
one Condorcet loser. 

Claim: 

If D2 satisfies (2.1.5), then Schulze STV, as defined in section 9.1, satisfies 
the Condorcet criterion for multi-winner electons, as defined in (9.3.1). 

 
Proof: 

Suppose alternative b ∈ A is a Condorcet winner. Suppose {a1,...,aM} ⊆ A \ {b}. 

We apply Schulze STV, as defined in section 9.1, on {a1,...,aM,b}. Suppose 
c ∈ {a1,...,aM,b} is an alternative with maximum N[({a1,...,aM,b}\{c});c]. Then 
(N[({a1,...,aM,b}\{c});c], N[({a1,...,aM});b]) is a win. With (9.3.5), we get that 
alternative c cannot be identical to alternative b. Therefore, the link 
({a1,...,aM,b}\{c}) → {a1,...,aM} is a path from ({a1,...,aM,b}\{c}) to {a1,...,aM} 
that contains only wins. 

On the other side, there cannot be a path from {a1,...,aM} to                  
({a1,...,aM,b}\{c}) that contains only wins because any path from {a1,...,aM} 
to ({a1,...,aM,b}\{c}) must contain a link from a set C(i) with b ∉ C(i) to a 
set C(i+1) with b ∈ C(i+1). But because of the definition of Condorcet 
winners, the link C(i) → C(i+1) must be a tie or a defeat. 
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With (2.1.5), we get that every path that contains only wins is stronger 
than every path that contains a tie or a defeat. 

Therefore, every set {a1,...,aM}, that does not contain alternative b, is 
disqualified by some set that contains alternative b.      □ 

The proofs that Schulze STV satisfies (9.3.2b), (9.3.2c), and (9.3.2d) are 
analogue to the proofs for (4.11.1.6), (4.11.2.9), and (9.3.2a). 

In a similar manner, we can generalize the Smith criterion (section 4.7) to 
multi-winner elections. 

Definition: 

A multi-winner election method, where M is the number of seats, satisfies 
the Smith criterion for multi-winner elections, if the following holds: 

Suppose ∅ ≠ B ⊊ A. Suppose x ∈  with 1 ≤ x ≤ | B | and x ≤ M. 

(9.3.9)  Suppose, for every y ∈  with 1 ≤ y ≤ x, we have: In 
every (M+1)-contest between y alternatives of the set B 
and M+1–y alternatives of A \ B each of the alternatives 
of the set B is in every potential winning set. 

Then every potential winning set contains at least x alternatives 
of the set B. 

In short, a multi-winner election method, where M is the number of 
seats, satisfies the Smith criterion for multi-winner elections, if the 
following holds: 

∀ ∅ ≠ B ⊊ A ∀ x ∈  with 1 ≤ x ≤ | B | and x ≤ M: 

( ( ∀ y ∈  with 1 ≤ y ≤ x 

∀ ∅ ≠ Ã ⊆ A with | Ã | = (M+1) and | Ã ∩ B | = y 

∀ A ∈ M|Ã: | A ∩ B | = y. ) 

⇒ ( ∀ A ∈ M: | A ∩ B | ≥ x. ) ) 
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Example: 

  There are C = 4 alternatives running for M = 2 seats. 
  When {a,b,c} are running, the unique winning set is {a,b}. 

When {a,b,d} are running, the unique winning set is {a,b}. 
When {a,c,d} are running, the unique winning set is {c,d}. 
When {b,c,d} are running, the unique winning set is {c,d}. 

 
In the example above, alternatives a and b are winners whenever they and 

exactly one other alternative are running. Furthermore, alternatives c and d 
are winners whenever they and exactly one other alternative are running. 
The Smith criterion for multi-winner elections doesn’t say anything in       
the example above. This shows that the Smith criterion for multi-winner 
elections demands more than just local stability. 

Claim: 

If D2 satisfies (2.1.5), then Schulze STV, as defined in section 9.1, 
satisfies the Smith criterion for multi-winner electons. 

 
Proof (overview): 

The proof that Schulze STV satisfies the Smith criterion for multi-winner 
elections is analogous to the proof that Schulze STV satisfies the Condorcet 
criterion for multi-winner elections. 

Part 1: Suppose z ∈ 0 with 0 ≤ z < x. Suppose {a1,...,a(M–z),b1,...,bz} is a 
set of M–z alternatives a1,...,a(M–z) ∈ A \ B and z alternatives b1,...,bz ∈ B. 
Suppose b(z+1) ∈ B \ {b1,...,bz} is an arbitrarily chosen alternative.       
Suppose c ∈ {a1,...,a(M–z),b1,...,bz,b(z+1)} is an alternative                              
with maximum N[({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c});c]. Then                   
(N[({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c});c], N[({a1,...,a(M–z),b1,...,bz,b(z+1)});b(z+1)]) 
is a win. With (9.3.9), we get c ∉ {b1,...,bz,b(z+1)}. Therefore, the link 
({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c}) → {a1,...,a(M–z),b1,...,bz} is a path from 
({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c}) to {a1,...,a(M–z),b1,...,bz} that contains only 
wins. 

On the other side, there cannot be a path from {a1,...,a(M–z),b1,...,bz} to                  
({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c}) that contains only wins because any path 
from {a1,...,a(M–z),b1,...,bz} to ({a1,...,a(M–z),b1,...,bz,b(z+1)}\{c}) must contain a 
link from a set C(i) with z alternatives from the set B to a set C(i+1) with z+1 
alternatives from the set B. But with (9.3.9), we get that the link C(i) → 
C(i+1) must be a tie or a defeat. 

With (2.1.5), we get that every path that contains only wins is stronger 
than every path that contains a tie or a defeat. 

Therefore, every set {a1,...,a(M–z),b1,...,bz}, that contains only z alternatives 
from the set B is disqualified by some set that contains z+1 alternatives from 
the set B. 

Part 2: Part 1 is applied to z : = 0,...,(x–1). As indirect defeats are 
transitive (section 4.1), we get that every set with less than x alternatives 
from the set B is disqualified by some set with x alternatives from the set B.□ 
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The Smith criterion for multi-winner elections implies the Condorcet 
criterion for multi-winner elections. We get the Condorcet criterion for 
multi-winner elections when we restrict the Smith criterion for multi-winner 
elections to sets with exactly one alternative. 

In example A53, the Smith criterion for multi-winner elections implies 
that at least one winner must come from the set {d,f} because, whenever 
exactly one alternative from the set {d,f} and exactly four alternatives from 
A \ {d,f} are running, the alternative from {d,f} is a winner of Schulze STV. 

9.4. Proportionality 
 

Definition (Dummett-Droop Proportionality): 

A preferential multi-winner election method satisfies Dummett-Droop 
proportionality (DDP) if the following holds for every ∅ ≠ B ⊊ A and 
for every x ∈  with x ≤ | B |: 

Suppose that strictly more than x ∙ N / (M+1) voters strictly prefer 
every alternative in B to every other alternative. In other words: 

║{ v ∈ V | ∀ a ∈ B ∀ b ∉ B: a v b }║ > x ∙ N / (M+1). 

Then at least x alternatives of set B must be elected. 

It has been proposed by Droop (1881) that an alternative should be elected 
as soon as it has received more than N / (M+1) votes. This idea has been 
generalized by Dummett (1984) to sets of alternatives. Today, DDP is 
considered a necessary and sufficient criterion for every preferential multi-
winner election method to qualify as an STV method.  

Claim: 
 
Schulze STV, as defined in section 9.1, satisfies Dummett-Droop 

proportionality. 
 

Proof (overview): 
 
The proof is ommitted because it is similar to the proof that Schulze STV 

satisfies the Smith criterion for multi-winner elections (section 9.3).   □ 
  



Markus Schulze, “The Schulze Method of Voting” 

 259 

10. Proportional Ranking 
 

When proportional representation by party lists is being used, then each 
party has to submit in advance a linear order of its candidates without 
knowing how many seats it will win. Frequently, the parties are interested 
that — however many candidates are elected — the elected candidates 
reflect the strengths of the different party wings in a manner as proportional 
as possible (Otten, 1998, 2000; Rosenstiel, 1998; Warren, 1999; Skowron, 
2017). We will call a linear order with this property a proportional ranking. 
The two most important approaches to produce a proportional ranking are 
the bottom-up approach (Rosenstiel, 1998) and the top-down approach 
(Otten, 1998, 2000). 

 
The bottom-up approach says that we start with the situation where all C 

candidates are elected. Then, for k = C to 2, we ask which candidate can be 
eliminated (without changing who is already eliminated) so that the distortion 
of the proportionality of the remaining candidates is as small as possible; the 
newly eliminated candidate then gets the k-th place of this party list. 

 
The top-down approach says that we use a single-winner election method 

to fill the first place of this party list. Then, for k = 2 to C, we ask which 
candidate can be added to the already elected candidates (without changing 
who is already elected) so that the distortion of the proportionality is as small 
as possible; the newly added candidate then gets the k-th place of this party 
list. 

 
I prefer the top-down approach to the bottom-up approach, because the 

bottom-up approach starts with the lowest and, therefore, (as the number of 
candidates is usually significantly larger than the number of seats this party 
can realistically hope to win) least important places so that slight fluctuations 
in the filling of the lowest places can have an enormous impact on the filling 
of the best places. Therefore, in this paper we presume that the top-down 
approach is being used. 

 
In section 10.1, we will propose a new proportional ranking method.      

In sections 10.2 and 10.3, we will apply this method to the examples of 
Tideman’s database. The proposed proportional ranking method is based on 
the following idea: 

 
• Suppose a1,...,a(k–1) ∈ A are already elected. 
 
• Suppose there are candidates ∅ ≠ {b1,...,bz} ⊆ A \ {a1,...,a(k–1)} such 

that, whenever some candidate bj ∈ {b1,...,bz} is added to {a1,...,a(k–1)}, 
then choosing the set {a1,...,a(k–1),bj} is compatible to the Smith 
criterion for k-winner elections (section 9.3). 

 
• Then the k-th seat should go to one of the candidates in {b1,...,bz}. 
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10.1. Schulze Proportional Ranking 
 
Proportional completion is defined in section 9.1.1. 
N[{a1,...,ak};b] is defined in section 9.1.2. 
D1 and D2 are two binary relations that each satisfy (2.1.1) – (2.1.3). 

 
Stage 1: 

 
We calculate the Schulze single-winner ranking 1 on A, as defined in 
section 5, with D1. 

 
Stage 2: 
 

Proportional completion is used to complete V to W. 
 
Stage 3: 
 
For k : = 1 to (C–1) do 

{ 
Suppose a1,...,a(k–1) are already elected. 
 
For each pair of alternatives b,c ∉ {a1,...,a(k–1)}, we define: 
 

H[b,c] : = N[{a1,...,a(k–1),b};c]. 
 
We apply the Schulze single-winner election method, as defined in 
section 2.3 stage 2, on H[i,j], instead of N[i,j], and with D2. If there is 
only one potential winner, then it gets the k-th place. If there is more 
than one potential winner, then the k-th place goes to that potential 
winner b with bc ∈ 1 for every other potential winner c. 

} 
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10.2. Example A53 
 

The following series of tables illustrates the Schulze proportional ranking 
method when applied to example A53 of Tideman’s database. Pairwise wins 
are fat and underlined. Pairwise ties are italic and underlined. 

 N[*;a] N[*;b] N[*;c] N[*;d] N[*;e] N[*;f] N[*;g] N[*;h] N[*;i] N[*;j] 

N[a;*] -- 316.175711 352.129380 303.100775 307.846154 298.883249 266.374696 349.351351 348.337731 193.625304 

N[b;*] 143.824289 -- 262.462462 221.153846 240.176991 222.913165 199.414894 265.438066 263.253012 128.845209 

N[c;*] 107.870620 197.537538 -- 197.906977 201.703470 183.197674 171.397260 240.747664 241.022364 105.891089 
N[d;*] 156.899225 238.846154 262.093023 -- 248.295455 242.234043 197.142857 264.532578 276.260623 146.975610 

N[e;*] 152.153846 219.823009 258.296530 211.704545 -- 214.494382 191.152815 259.814815 274.842767 120.992556 

N[f;*] 161.116751 237.086835 276.802326 217.765957 245.505618 -- 207.817259 280.229885 275.190616 139.803922 

N[g;*] 193.625304 260.585106 288.602740 262.857143 268.847185 252.182741 -- 306.259947 314.604905 183.785047 

N[h;*] 110.648649 194.561934 219.252336 195.467422 200.185185 179.770115 153.740053 -- 250.125000 87.058824 

N[i;*] 111.662269 196.746988 218.977636 183.739377 185.157233 184.809384 145.395095 209.875000 -- 97.150127 
N[j;*] 266.374696 331.154791 354.108911 313.024390 339.007444 320.196078 276.214953 372.941176 362.849873 -- 

The 1. place goes to alternative j. 
 

 N[{j,*};a] N[{j,*};b] N[{j,*};c] N[{j,*};d] N[{j,*};e] N[{j,*};f] N[{j,*};g] N[{j,*};h] N[{j,*};i] 

N[{a,j};*] -- 188.909513 204.084507 184.640371 188.568129 185.604651 164.582393 208.844340 201.113744 
N[{b,j};*] 143.824289 -- 193.995327 171.444954 185.831382 174.389671 155.588235 200.287081 196.515513 
N[{c,j};*] 107.870620 178.948598 -- 172.097902 181.492891 173.849765 153.507973 201.318945 192.673031 
N[{d,j};*] 156.357309 183.050459 193.006993 -- 187.645688 179.186047 156.628959 196.988235 197.605634 
N[{e,j};*] 149.792148 179.367681 195.118483 172.097902 -- 175.754717 157.313770 201.802885 200.555556 
N[{f,j};*] 148.162791 180.328638 192.206573 171.162791 182.264151 -- 157.123596 200.428571 198.162291 
N[{g,j};*] 160.948081 188.891403 200.136674 184.208145 191.060948 182.449438 -- 207.159353 204.210526 
N[{h,j};*] 110.648649 173.325359 183.669065 165.058824 175.264423 165.928571 144.480370 -- 191.477833 
N[{i,j};*] 111.662269 176.754177 187.732697 165.751174 178.333333 169.069212 145.395095 194.876847 -- 

The 2. place goes to alternative a. 
 

 N[{a,j,*};b] N[{a,j,*};c] N[{a,j,*};d] N[{a,j,*};e] N[{a,j,*};f] N[{a,j,*};g] N[{a,j,*};h] N[{a,j,*};i] 

N[{a,b,j};*] -- 139.742424 126.860987 132.267267 127.603930 115.511111 142.105263 137.929985 
N[{a,c,j};*] 130.333333 -- 126.560847 129.287879 127.308869 112.604167 141.376147 137.081413 
N[{a,d,j};*] 131.674141 139.077853 -- 131.674141 129.342404 116.356932 141.511716 138.348485 
N[{a,e,j};*] 129.504505 141.136364 127.892377 -- 128.702866 117.035398 142.554800 141.430746 
N[{a,f,j};*] 130.733182 140.321101 125.865457 130.090498 -- 115.851852 143.204252 140.000000 
N[{a,g,j};*] 133.911111 144.092262 133.318584 135.014749 131.866667 -- 145.769806 143.685393 
N[{a,h,j};*] 128.771930 137.859327 124.822373 127.603930 124.692483 110.702541 -- 137.324053 
N[{a,i,j};*] 129.878234 138.847926 126.151515 129.178082 126.666667 113.707865 140.525909 -- 

The 3. place goes to alternative g. 
 
 N[{a,g,j,*};b] N[{a,g,j,*};c] N[{a,g,j,*};d] N[{a,g,j,*};e] N[{a,g,j,*};f] N[{a,g,j,*};h] N[{a,g,j,*};i] 

N[{a,b,g,j};*] -- 108.667401 101.411379 104.131868 101.068282 110.410200 109.122222 
N[{a,c,g,j};*] 102.334802 -- 101.574890 102.615385 100.465632 109.888889 108.355556 
N[{a,d,g,j};*] 102.166302 108.414097 -- 102.921225 101.351648 110.197802 108.907285 
N[{a,e,g,j};*] 101.351648 108.934066 101.663020 -- 101.321586 110.674779 109.402655 
N[{a,f,g,j};*] 102.334802 109.135255 101.098901 102.841410 -- 110.665188 109.390244 
N[{a,g,h,j};*] 101.230599 108.611111 100.087912 101.769912 99.190687 -- 108.568233 
N[{a,g,i,j};*] 101.966667 108.866667 101.291391 102.533186 99.955654 109.597315 -- 

The 4. place goes to alternative d. 
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 N[{a,d,g,j,*};b] N[{a,d,g,j,*};c] N[{a,d,g,j,*};e] N[{a,d,g,j,*};f] N[{a,d,g,j,*};h] N[{a,d,g,j,*};i] 

N[{a,b,d,g,j};*] -- 87.189542 84.383442 82.579521 88.986900 88.175055 

N[{a,c,d,g,j};*] 82.579521 -- 83.362445 81.687912 88.570175 87.551648 

N[{a,d,e,g,j};*] 82.178649 87.379913 -- 82.358079 89.181619 88.175055 

N[{a,d,f,g,j};*] 82.579521 87.551648 83.362445 -- 88.973684 88.166667 

N[{a,d,g,h,j};*] 82.157205 87.157895 82.739606 81.307018 -- 87.753846 

N[{a,d,g,i,j};*] 82.135667 87.349451 83.142232 81.508772 88.158242 -- 
The 5. place goes to alternative f ( because alternative f is ranked above 
alternative b in the single-winner ranking; i.e. fb ∈ 1 ). 
 

 N[{a,d,f,g,j,*};b] N[{a,d,f,g,j,*};c] N[{a,d,f,g,j,*};e] N[{a,d,f,g,j,*};h] N[{a,d,f,g,j,*};i] 

N[{a,b,d,f,g,j};*] -- 73.326071 71.000000 74.662309 73.994190 

N[{a,c,d,f,g,j};*] 69.484386 -- 70.138282 74.144737 73.640351 

N[{a,d,e,f,g,j};*] 69.166667 73.151383 -- 74.657933 73.988355 

N[{a,d,f,g,h,j};*] 69.150327 73.304094 69.803493 -- 73.976608 

N[{a,d,f,g,i,j};*] 69.150327 73.304094 70.138282 74.144737 -- 
The 6. place goes to alternative b. 
 

 N[{a,b,d,f,g,j,*};c] N[{a,b,d,f,g,j,*};e] N[{a,b,d,f,g,j,*};h] N[{a,b,d,f,g,j,*};i] 

N[{a,b,c,d,f,g,j};*] -- 61.285714 63.996265 63.566760 

N[{a,b,d,e,f,g,j};*] 63.000000 -- 64.000000 63.571429 

N[{a,b,d,f,g,h,j};*] 63.137255 61.000000 -- 63.709928 

N[{a,b,d,f,g,i,j};*] 63.137255 61.285714 63.996265 -- 
The 7. place goes to alternative e. 
 

 N[{a,b,d,e,f,g,j,*};c] N[{a,b,d,e,f,g,j,*};h] N[{a,b,d,e,f,g,j,*};i] 

N[{a,b,c,d,e,f,g,j};*] -- 56.000000 55.750000 

N[{a,b,d,e,f,g,h,j};*] 55.375000 -- 55.750000 

N[{a,b,d,e,f,g,i,j};*] 55.375000 56.000000 -- 
The 8. place goes to alternative c. 
 

 N[{a,b,c,d,e,f,g,j,*};h] N[{a,b,c,d,e,f,g,j,*};i] 

N[{a,b,c,d,e,f,g,h,j};*] -- 49.555556 

N[{a,b,c,d,e,f,g,i,j};*] 49.777778 -- 
The 9. place goes to alternative i. 
 
The 10. place goes to alternative h. 

So, the Schulze proportional ranking is j a g d f b e c i h. 
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10.3. Tideman’s Database 
 

In table 10.3.1, Schulze STV and Schulze proportional ranking are 
applied to the instances of Tideman’s (2000) database. We use ratio for D1 
because ratio corresponds to proportional completion; the fact that we use 
ratio for D1 means that it makes no difference whether we first calculate the 
Schulze single-winner ranking 1 and then apply proportional completion or 
first apply proportional completion and then calculate the Schulze single-
winner ranking 1. We use margin for D2 because of simplicity. 

The column “name #1” contains the name of the instance. The column 
“name #2” contains the name of the same instance in Wichmann’s (1994) 
database. N is the number of voters. C is the number of alternatives. M is the 
number of seats. 

Column “Dummett” contains the constraints given by “Dummett-Droop 
proportionality” (DDP), as defined in section 9.4. The constraints are 
separated by spaces. If this constraint consists of a single alternative, then 
this means that this alternative must be elected according to DDP. If this 
constraint has the form “abcdef(i)” then this means that at least i alternatives 
of the set {a,b,c,d,e,f} must be elected according to DDP. For example, in 
example A35 the constraints are “f eijkq(1)” so that (1) alternative f must be 
elected and (2) at least one alternative of the set {e,i,j,k,q} must be elected 
according to DDP. In 3 instances (A64, A72, A83), there is only one set of 
M alternatives that can be elected according to DDP. 

The column “Condorcet winners” contains the Condorcet winners in 
Schulze STV [according to (9.3.5)]; alternatives, that are only weak 
Condorcet winners [according to (9.3.6)], are listed in brackets ( ). The 
column “Condorcet losers” contains the Condorcet losers in Schulze STV 
[according to (9.3.7)]; alternatives, that are only weak Condorcet losers 
[according to (9.3.8)], are listed in brackets ( ). It is important to keep in mind 
that, as long as D2 satisfies (2.1.5), the Condorcet winners in Schulze STV, 
the Condorcet losers in Schulze STV, and the possible winning sets according 
to the Smith criterion (for multi-winner elections) in Schulze STV do not 
depend on the specific choice for D2. As long as D2 satisfies (2.1.4) and 
(2.1.5), the weak Condorcet winners in Schulze STV and the weak Condorcet 
losers in Schulze STV do not depend on the specific choice for D2. 
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The column “Schulze STV” contains the winning set of Schulze STV, as 
defined in section 9.1.3. When several sets are tied for winning, then (rather 
than listing all potential winning sets) the winning set chosen by the tie-
breaker, as defined in section 9.1.3 stage 4, is listed. In 3 instances (A34, 
A88, A97), an alternative, that is a weak Condorcet winner, is not elected. In 
instances A34 and A97, this is due to the fact that the number of alternatives, 
that are weak Condorcet winners or non-weak Condorcet winners, is larger 
than the number of seats. In instance A34, the sets {a,b,c,d,e,f,g,h,j,k,m,n}, 
{a,b,c,d,e,f,h,j,k,l,m,n}, {a,b,c,d,e,g,h,j,k,l,m,n}, {a,b,c,e,f,g,h,j,k,l,m,n}, and 
{b,c,d,e,f,g,h,j,k,l,m,n} are tied for winning; the tie-breaker chooses {a,b,c,d, 
e,f,h,j,k,l,m,n}, because (1) da ∈ 1, dl ∈ 1, df ∈ 1, and dg ∈ 1 so that 
the set {a,b,c,e,f,g,h,j,k,l,m,n} is disqualified at the first stage for not 
containing alternative d, (2) al ∈ 1, af ∈ 1, and ag ∈ 1 so that the set {b, 
c,d,e,f,g,h,j,k,l,m,n} is disqualified at the second stage for not containing 
alternative a, (3) lf ∈ 1 and lg ∈ 1 so that the set {a,b,c,d,e,f,g,h,j,k,m,n} is 
disqualified at the third stage for not containing alternative l, and (4) fg ∈ 1 
so that the set {a,b,c,d,e,g,h,j,k,l,m,n} is disqualified at the fourth stage for 
not containing alternative f. In instance A88, the sets {a,c,e,f,g,h}, {b,c,e,f,g, 
h}, and {c,d,e,f,g,h} are tied for winning; while only alternative d is a weak 
Condorcet winner, the tie-breaker chooses {a,c,e,f,g,h}, because ab ∈ 1 and 
ad ∈ 1. In instance A97, the sets {a,b} and {a,c} are tied for winning; the 
tie-breaker chooses {a,b}, because bc ∈ 1. 

The column “Schulze proportional ranking” contains the Schulze 
proportional ranking, as defined in section 10.1. When several rankings are 
tied for winning, then (rather than listing all potential rankings) the ranking 
chosen by the tie-breaker, as defined in section 10.1 stage 3 last sentence,    
is listed. In 4 instances (A10, A12, A33, A67), the Schulze proportional 
ranking is not unique even with the proposed tie-breaker. This is due to the 
fact that, in these instances, even the Schulze single-winner ranking 1 is  
not unique. Only in 6 of the 66 instances of Tideman’s database (A10, A11, 
A13, A33, A34, A59), the winning set of Schulze STV differs from the first 
M alternatives of Schulze proportional ranking. 

The column “runtime” contains the runtime to calculate the Schulze STV 
winners. A Fujitsu RX 350S8 with two 6-core “E5-2630v2 @ 2.60 GHz” 
processors was used for the calculations. Hyper-threading was disabled. The 
programs to calculate the STV winners and the Schulze proportional ranking 
were written in Microsoft Visual C++ 2010.   
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 name 
#1 

name 
#2 N C M Dummett Condorcet 

winners 
Condorcet 

losers 
Schulze 

STV 

Schulze 
proportional 

ranking 
runtime 

1 A01 R006 380 10 3 a a h i --- a h i a i h d b c g j f e < 0.1 s 

2 A02 R007 371 9 2 --- c d g c d c d e b f a h i g < 0.1 s 

3 A03 R008 989 15 7 d f h b d e f h k --- b d e f h k n f h d k b e n g 
a l c i j o m 5.3 s 

4 A04 R009 43 14 2 --- i d f i i f e a k c b g 
d h m j l n < 0.1 s 

5 A05 R010 762 16 7 a a c d e g l m --- a c d e g l m a c m e d g l k 
f o p h i j b n 7.4 s 

6 A06 R011 280 9 5 i c e h i --- b c e h i i h e c b f g a d < 0.1 s 

7 A07 R012 79 17 2 --- (d) i f d i i d c o m p h a 
k g e j l n f b q < 0.1 s 

8 A08 R013 78 7 2 d d g (a) d g d g c b f e a < 0.1 s 

9 A10 R015 83 19 3 --- m n p --- m n p 

n ( ( a p m q ) or 
( m p q a ) ) 
g f s r l i b 

d j k e h o c 

< 0.1 s 

10 A11 R016 963 10 6 a c a c (e) h --- a c d e g h a c e h j g d i b f < 0.1 s 

11 A12 R017 76 20 2 --- i r --- i r 

r i l e g s a m 
p b h t n o k d 

( ( f j ) or ( j f ) ) 
c q 

< 0.1 s 

12 A13 R018 104 26 2 --- t --- k t 
i t k m s j c f y 

z l u n a g e b p 
r d h v x o q w 

< 0.1 s 

13 A14 R019 73 17 2 --- b j --- b j j b c n h q o i a 
l e d g k p m f < 0.1 s 

14 A15 R020 77 21 2 --- (g) l --- g l l g t r m i c h p k j 
q s a b o d u n f e < 0.1 s 

15 A17 R022 867 13 8 a b j a b d e f j l --- a b d e f i j l j b a e l f d 
i m h k c g 0.5 s 

16 A18 R023 976 6 4 b c a b c f e a b c f b c f a d e < 0.1 s 

17 A19 R024 860 7 3 --- a e g f a e g e a g c d b f < 0.1 s 

18 A20 R025 2785 5 4 a d a c d e b a c d e a d c e b < 0.1 s 

19 A22 R027 44 11 2 ck(1) (c) k f c k k c a g b d 
i j h e f < 0.1 s 

20 A23 R028 91 29 2 --- 3 5 --- 3 5 

3-5-21-7-27-
26-22-9-17-14-
15-24-4-16-19-
20-6-11-18-28-
2-23-29-1-13-

8-10-12-25 

< 0.1 s 

 
Table 10.3.1 (part 1 of 3): Schulze STV applied to instances of 
Tideman’s database 
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 name 
#1 

name 
#2 N C M Dummett Condorcet 

winners 
Condorcet 

losers 
Schulze 

STV 

Schulze 
proportional  

ranking 
runtime 

21 A33 R038 9 18 3 --- (o) (j) e o q 

o a e i h c l 
n q f r d g 

( ( b m p ) or 
( b p m ) or 
( m b p ) ) 

k j 

< 0.1 s 

22 A34 R039 63 14 12 b e h j n (a) b c (d) e (f) 
(g) h j k (l) m n (i) a b c d e f 

h j k l m n 
j b h e k n l 
g m c d a f i < 0.1 s 

23 A35 R040 176 17 5 f eijkq(1) a (d) e f --- a d e f q f e a q d k b i 
m n c h j p o g l 2.9 s 

24 A48 R041 923 10 9 b c d e f a b c d e f g h j i a b c d e 
f g h j 

d f b e c 
h j g a i < 0.1 s 

25 A49 R042 575 13 3 h a c h k a c h h c a j l d m 
g b i e f k < 0.1 s 

26 A51 R044 42 6 3 d a d e b a d e d a e f c b < 0.1 s 

27 A52 R045 667 10 6 d e a b c d e g h a b c d e g e d b g a c j f i h < 0.1 s 

28 A53 R046 460 10 4 j a (d) g j --- a d g j j a g d f b e c i h < 0.1 s 

29 A54 R047 924 11 9 a d e f k a b d e f g h j k --- a b d e f 
g h j k 

e d f a k g 
h j b i c < 0.1 s 

30 A55 R048 302 10 5 i a (d) f i j b a d f i j i a j f d e h c g b < 0.1 s 

31 A56 R049 685 13 2 --- j k --- j k j k f h m g d 
a e c b l i < 0.1 s 

32 A57 R050 310 9 2 de(1) d e --- d e d e i b h c g f a < 0.1 s 

33 A59 R052 694 7 4 d f d f g --- b d f g f d e g b c a < 0.1 s 

34 A63 R056 156 7 2 --- c f --- c f c f e d b a g < 0.1 s 

35 A64 R057 196 3 2 b c b c a b c b c a < 0.1 s 

36 A65 R058 198 10 6 b g b e f g j --- a b e f g j g b f e j a d c h i < 0.1 s 

37 A66 R059 193 6 4 f b d e f a b d e f f d e b c a < 0.1 s 

38 A67 R060 183 14 10 b f g k b c e f g 
i j k l --- b c e f g 

h i j k l 

( ( f g ) or ( g f ) ) 
k b i e j l 

c h n m d a 
4.0 s 

39 A68 R061 50 4 3 a c a c d b a c d a c d b < 0.1 s 

40 A69 R062 86 9 3 --- a c e --- a c e e c a f i d b h g < 0.1 s 

 
Table 10.3.1 (part 2 of 3): Schulze STV applied to instances of 
Tideman’s database 
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 name 
#1 

name 
#2 N C M Dummett Condorcet 

winners 
Condorcet 

losers 
Schulze 

STV 

Schulze 
proportional 

ranking 
runtime 

41 A70 R063 529 9 3 e e h i --- e h i e i h c d b a g f < 0.1 s 

42 A71 R064 500 8 7 d g a b c d e f g h a b c d e f g d c g e a b f h < 0.1 s 

43 A72 R065 272 3 2 a c a c b a c a c b < 0.1 s 

44 A73 R066 525 5 2 --- c d --- c d d c b a e < 0.1 s 

45 A74 R067 253 3 2 a a c b a c a c b < 0.1 s 

46 A76 R069 403 5 2 c a c --- a c c a d b e < 0.1 s 

47 A78 R071 486 4 3 c d b c d a b c d c d b a < 0.1 s 

48 A79 R072 362 8 4 g a c e g --- a c e g g a e c f d b h < 0.1 s 

49 A80 R073 269 7 5 a a b c e g --- a b c e g a e c g b f d < 0.1 s 

50 A81 R074 902 11 9 b c e h j a b c e g h i j k f a b c e g 
h i j k 

h e c b j g 
a i k d f < 0.1 s 

51 A83 R076 1123 4 3 a b c a b c d a b c c a b d < 0.1 s 

52 A84 R077 277 7 6 b c e a b c d e g f a b c d e g e b c d g a f < 0.1 s 

53 A85 R078 158 4 3 a d a b d c a b d d a b c < 0.1 s 

54 A86 R079 157 5 4 c a c d e b a c d e c a d e b < 0.1 s 

55 A87 R080 120 4 3 b d a b d c a b d d b a c < 0.1 s 

56 A88 R081 135 9 6 e h c (d) e f g h --- a c e f g h h e g c f a d b i < 0.1 s 

57 A89 R082 256 5 3 e acd(1) a d e c a d e e d a b c < 0.1 s 

58 A90 R083 366 20 12 --- a (b) c d e f 
 i l (n) (o) t --- a b c d e f 

i l n o s t 
a i t l e c s d f n o 
b p j m g k r h q 49.0 s 

59 A92 R085 540 13 3 d d f i --- d f i d f i e b h a 
m c j g k l < 0.1 s 

60 A93 R086 561 4 2 --- b d a b d b d c a < 0.1 s 

61 A94 R087 579 4 2 --- a d b a d a d b c < 0.1 s 

62 A95 R088 587 7 2 --- a (b) c a b a b f g d e c < 0.1 s 

63 A96 R089 564 6 2 --- a b c a b a b e f d c < 0.1 s 

64 A97 R090 284 4 2 --- a (b) (c) d a b a b c d < 0.1 s 

65 A98 R091 279 4 2 --- a c d a c a c b d < 0.1 s 

66 A99 R092 275 4 2 --- a b --- a b b a c d < 0.1 s 

 
Table 10.3.1 (part 3 of 3): Schulze STV applied to instances of 
Tideman’s database 
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In 45 instances (A01, A02, A05, A08, A10, A12, A14, A18, A19, A20, 
A23, A48, A49, A51, A52, A54, A56, A57, A63, A64, A66, A68, A69, A70, 
A71, A72, A73, A74, A76, A78, A79, A80, A81, A83, A84, A85, A86, A87, 
A89, A92, A93, A94, A96, A98, A99), there are M Condorcet winners 
[according to (9.3.5)]. 

 
In 16 instances, there are M–1 Condorcet winners. For the remaining seat, 

there is a set ∅ ≠ B ⊊ A such that the Smith criterion for multi-winner 
elections (section 9.3) says that every winning set must contain at least one 
alternative from the set B. Table 10.3.2 lists these instances and the set B. 
 
 

 

 
Table 10.3.2: Instances of Tideman’s database 
with M–1 Condorcet winners 

  

 name #1 N C M Condorcet winners set B 

1 A03 989 15 7 b d e f h k g n 

2 A04 43 14 2 i a f k 

3 A06 280 9 5 c e h i b f g 

4 A07 79 17 2 i c d 

5 A13 104 26 2 t i k 

6 A15 77 21 2 l a b c d g h i j 
k m n p q r s t 

7 A17 867 13 8 a b d e f j l i m 

8 A22 44 11 2 k a b c d e g h i j 

9 A53 460 10 4 a g j d f 

10 A55 302 10 5 a f i j d e h 

11 A59 694 7 4 d f g b e 

12 A65 198 10 6 b e f g j a d 

13 A67 183 14 10 b c e f g i j k l h m n 

14 A88 135 9 6 c e f g h a b d 

15 A95 587 7 2 a b f 

16 A97 284 4 2 a b c 
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The 45 instances with M Condorcet winners are interesting because,       
in these instances, we know that we can remove all other alternatives or        
any subset of the other alternatives and the result will not change. This 
observation follows directly from the definition of Condorcet winners. 

 
The 16 instances with M–1 Condorcet winners and a set B such that the 

last remaining winner must come from the set B are interesting because, 
again, we know that we can remove all other alternatives or any subset of the 
other alternatives and the result will not change. The proof for this is identical 
to the proof that the Schulze method satisfies Smith-IIA (section 4.7). 

 
Only in 5 instances (A11, A33, A34, A35, A90), there are less than M–1 

Condorcet winners. This shows that we succeeded in defining the Condorcet 
criterion for multi-winner elections in such a manner that there are always 
many Condorcet winners (section 9.3). 

 
 
11. Comparison with other Methods 

 
Table 11.2 compares the Schulze method with its main contenders. 

Extensive descriptions of the different methods can be found in publications 
by Fishburn (1977), Nurmi (1987), Kopfermann (1991), Levin and Nalebuff 
(1995), and Tideman (2006). As most of these methods only generate a set  
of potential winners and don’t generate a binary relation , only that part of 
the different criteria is considered that refers to the set  of potential winners. 

 
In terms of satisfied and violated criteria, that election method, that 

comes closest to the Schulze method, is Tideman’s ranked pairs method 
(Tideman, 1987). The only difference is that the ranked pairs method doesn’t 
choose from the MinMax set BD. 

The ranked pairs method works from the strongest to the weakest link. 
The link xy is locked if and only if it doesn’t create a directed cycle with 
already locked links. Otherwise, this link is locked in its opposite direction. 

In example 1, the ranked pairs method locks db. Then it locks cb. Then it 
locks ac. Then it locks ab, since locking ba in its original direction would 
create a directed cycle with the already locked links ac and cb. Then it locks 
cd. Then it locks ad, since locking da in its original direction would create a 
directed cycle with the already locked links ac and cd. 

The winner of the ranked pairs method is alternative a ∉ BD = {d}, 
because there is no locked link that ends in alternative a. 

 
Although Tideman’s ranked pairs method is that election method that 

comes closest to the Schulze method in terms of satisfied and violated criteria, 
random simulations by Wright (2009) showed that that election method, that 
agrees the most frequently with the Schulze method, is the Simpson-Kramer 
method (table 11.1). 
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number of 
alternatives A B C 

3 100.0 % 100.0 % 100.0 % 
4 99.7 % 98.5 % 98.2 % 
5 99.2 % 96.0 % 95.3 % 
6 99.1 % 93.0 % 92.3 % 
7 98.9 % 90.0 % 89.1 % 

 
Table 11.1: Simulations by Wright (2009) 

A: Probability that the Schulze method conforms with the 
Simpson-Kramer method 

B: Probability that the Schulze method conforms with the 
ranked pairs method 

C: Probability that the ranked pairs method conforms with 
the Simpson-Kramer method 
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Baldwin Y Y N N N Y N Y Y Y Y Y N N N Y 
Black Y Y Y Y N N N Y Y N Y Y N N N Y 
Borda Y Y Y Y N N N N Y N N Y Y N N Y 
Bucklin Y Y N Y N N N N N Y Y Y N N N Y 
Copeland N Y Y Y N Y Y Y Y Y Y Y N N N Y 
Dodgson Y Y N N N N N Y N N Y N N N N N 
instant runoff Y Y N N Y N N N Y Y Y Y N N N Y 
Kemeny-Young Y Y Y Y N Y Y Y Y Y Y Y N N N N 
Nanson Y Y Y N N Y N Y Y Y Y Y N N N Y 
plurality Y Y N Y N N N N N N Y N Y N N Y 
ranked pairs Y Y Y Y Y Y Y Y Y Y Y Y N N Y Y 
Schulze Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y 
Simpson-Kramer Y Y N Y N N N Y N N Y N N N Y Y 
Slater N Y Y Y N Y Y Y Y Y Y Y N N N N 
Young Y Y N Y N N N Y N N Y N N N N N 
 
Table 11.2: Comparison of Election Methods 
 
“Y” = compliance 
“N” = violation 
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